Patents by Inventor Eli Cheifetz

Eli Cheifetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11823883
    Abstract: An ion detector for secondary ion mass spectrometer, the detector having an electron emission plate coupled to a first electrical potential and configured to emit electrons upon incidence on ions; a scintillator coupled to a second electrical potential, different from the first electrical potential, the scintillator having a front side facing the electron emission plate and a backside, the scintillator configured to emit photons from the backside upon incidence of electrons on the front side; a lightguide coupled to the backside of the scintillator and confining flow of photons emitted from the backside of the scintillator; and a solid-state photomultiplier coupled to the light guide and having an output configured to output electrical signal corresponding to incidence of photons from the lightguide. A SIMS system includes a plurality of such detectors movable arranged over the focal plane of a mass analyzer.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: November 21, 2023
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Christopher F. Bevis, Yungman Alan Liu, David Allen Reed, Eli Cheifetz, Amit Weingarten, Alexander Kadyshevitch
  • Publication number: 20220223395
    Abstract: An ion detector for secondary ion mass spectrometer, the detector having an electron emission plate coupled to a first electrical potential and configured to emit electrons upon incidence on ions; a scintillator coupled to a second electrical potential, different from the first electrical potential, the scintillator having a front side facing the electron emission plate and a backside, the scintillator configured to emit photons from the backside upon incidence of electrons on the front side; a lightguide coupled to the backside of the scintillator and confining flow of photons emitted from the backside of the scintillator; and a solid-state photomultiplier coupled to the light guide and having an output configured to output electrical signal corresponding to incidence of photons from the lightguide. A SIMS system includes a plurality of such detectors movable arranged over the focal plane of a mass analyzer.
    Type: Application
    Filed: November 19, 2021
    Publication date: July 14, 2022
    Inventors: Christopher F. BEVIS, Yungman Alan LIU, David Allen REED, Eli CHEIFETZ, Amit WEINGARTEN, Alexander KADYSHEVITCH
  • Patent number: 11322333
    Abstract: A scintillator assembly including an entrance surface for receiving charged particles into the scintillator assembly, the charged particles including first charged particles at a first energy level and second charged particles at a second energy level. A first scintillator structure configured for receiving the first charged particles and generating a corresponding first signal formed of first photons with a first wavelength of ?1, a second scintillator structure configured for receiving the second charged particles and generating a corresponding second signal of second photons with a second wavelength of ?2, and an emitting surface for egress of a combined signal from the scintillator assembly, the combined signal including the first and second photons, and at least one beam splitter for receiving the combined signal and separating the combined signal to first and second photons.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: May 3, 2022
    Assignee: EL-MUL TECHNOLOGIES LTD
    Inventors: Dmitry Shur, Eli Cheifetz, Armin Schon
  • Patent number: 11183377
    Abstract: An ion detector for secondary ion mass spectrometer, the detector having an electron emission plate coupled to a first electrical potential and configured to emit electrons upon incidence on ions; a scintillator coupled to a second electrical potential, different from the first electrical potential, the scintillator having a front side facing the electron emission plate and a backside, the scintillator configured to emit photons from the backside upon incidence of electrons on the front side; a lightguide coupled to the backside of the scintillator and confining flow of photons emitted from the backside of the scintillator; and a solid-state photomultiplier coupled to the light guide and having an output configured to output electrical signal corresponding to incidence of photons from the lightguide. A SIMS system includes a plurality of such detectors movable arranged over the focal plane of a mass analyzer.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: November 23, 2021
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: Christopher F. Bevis, Yungman Alan Liu, David Allen Reed, Eli Cheifetz, Amit Weingarten, Alexander Kadyshevitch
  • Publication number: 20210280387
    Abstract: A scintillator assembly including an entrance surface for receiving charged particles into the scintillator assembly, the charged particles including first charged particles at a first energy level and second charged particles at a second energy level. A first scintillator structure configured for receiving the first charged particles and generating a corresponding first signal formed of first photons with a first wavelength of ?1, a second scintillator structure configured for receiving the second charged particles and generating a corresponding second signal of second photons with a second wavelength of ?2, and an emitting surface for egress of a combined signal from the scintillator assembly, the combined signal including the first and second photons, and at least one beam splitter for receiving the combined signal and separating the combined signal to first and second photons.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Inventors: Dmitry SHUR, Eli CHEIFETZ, Armin SCHON
  • Patent number: 11031210
    Abstract: A scintillator assembly including an entrance surface for receiving charged particles into the scintillator assembly, the charged particles including first charged particles at a first energy level and second charged particles at a second energy level. A first scintillator structure configured for receiving the first charged particles and generating a corresponding first signal formed of first photons with a first wavelength of ?1, a second scintillator structure configured for receiving the second charged particles and generating a corresponding second signal of second photons with a second wavelength of ?2, and an emitting surface for egress of a combined signal from the scintillator assembly, the combined signal including the first and second photons, and at least one beam splitter for receiving the combined signal and separating the combined signal to first and second photons.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: June 8, 2021
    Assignee: EL-MUL TECHNOLOGIES LTD.
    Inventors: Dmitry Shur, Eli Cheifetz, Armin Schon
  • Patent number: 10910193
    Abstract: An electron detector assembly configured for detecting electrons emitted from a sample irradiated by an electron beam, including a scintillator configured with a scintillator layer formed with a scintillating surface. The scintillator layer emits light signals corresponding to impingement of electrons upon the scintillating surface. A light guide plate is coupled to the scintillator layer and includes a peripheral surface. One or more silicon photomultiplier devices are positioned upon the peripheral surface, wherein one or more silicon photomultiplier devices are arranged perpendicularly or obliquely relative to the scintillating surface. The silicon photomultiplier device is configured to yield an electrical signal from an electron impinging upon the scintillator surface.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: February 2, 2021
    Assignee: EL-MUL TECHNOLOGIES LTD.
    Inventors: Eli Cheifetz, Amit Weingarten, Semyon Shopman, Silviu Reinhorn, Dmitry Shur
  • Publication number: 20200312609
    Abstract: A scintillator assembly including an entrance surface for receiving charged particles into the scintillator assembly, the charged particles including first charged particles at a first energy level and second charged particles at a second energy level. A first scintillator structure configured for receiving the first charged particles and generating a corresponding first signal formed of first photons with a first wavelength of ?1, a second scintillator structure configured for receiving the second charged particles and generating a corresponding second signal of second photons with a second wavelength of ?2, and an emitting surface for egress of a combined signal from the scintillator assembly, the combined signal including the first and second photons, and at least one beam splitter for receiving the combined signal and separating the combined signal to first and second photons.
    Type: Application
    Filed: March 6, 2020
    Publication date: October 1, 2020
    Inventors: Dmitry SHUR, Eli CHEIFETZ, Armin SCHON
  • Publication number: 20200066502
    Abstract: An ion detector for secondary ion mass spectrometer, the detector having an electron emission plate coupled to a first electrical potential and configured to emit electrons upon incidence on ions; a scintillator coupled to a second electrical potential, different from the first electrical potential, the scintillator having a front side facing the electron emission plate and a backside, the scintillator configured to emit photons from the backside upon incidence of electrons on the front side; a lightguide coupled to the backside of the scintillator and confining flow of photons emitted from the backside of the scintillator; and a solid-state photomultiplier coupled to the light guide and having an output configured to output electrical signal corresponding to incidence of photons from the lightguide. A SIMS system includes a plurality of such detectors movable arranged over the focal plane of a mass analyzer.
    Type: Application
    Filed: May 12, 2017
    Publication date: February 27, 2020
    Inventors: Christopher F. BEVIS, Yungman Alan LIU, David Allen REED, Eli CHEIFETZ, Amit WEINGARTEN, Alexander KADYSHEVITCH
  • Publication number: 20190259571
    Abstract: An electron detector assembly configured for detecting electrons emitted from a sample irradiated by an electron beam, including a scintillator configured with a scintillator layer formed with a scintillating surface. The scintillator layer emits light signals corresponding to impingement of electrons upon the scintillating surface. A light guide plate is coupled to the scintillator layer and includes a peripheral surface. One or more silicon photomultiplier devices are positioned upon the peripheral surface, wherein one or more silicon photomultiplier devices are arranged perpendicularly or obliquely relative to the scintillating surface. The silicon photomultiplier device is configured to yield an electrical signal from an electron impinging upon the scintillator surface.
    Type: Application
    Filed: March 18, 2019
    Publication date: August 22, 2019
    Inventors: ELI CHEIFETZ, AMIT WEINGARTEN, SEMYON SHOFMAN, SILVIU REINHORN, DMITRY SHUR
  • Patent number: 10236155
    Abstract: An electron detector assembly configured for detecting electrons emitted from a sample irradiated by an electron beam, comprising a scintillator including a scintillator layer, the scintillator layer emitting light signals corresponding to impingement of electrons thereupon, a light guide plate coupled to the scintillator layer and comprising a peripheral surface, and a single or plurality of silicon photomultiplier devices positioned upon the peripheral surface and arranged perpendicularly or obliquely relative to the scintillating surface, the silicon photomultiplier device being configured to yield an electrical signal from an electron impinging upon the scintillator layer.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: March 19, 2019
    Assignee: EL-MUL TECHNOLOGIES LTD.
    Inventors: Eli Cheifetz, Amit Weingarten, Semyon Shofman, Silviu Reinhorn
  • Patent number: 9673019
    Abstract: An electron detection system for detecting secondary electrons emitted from a sample irradiated by a Focused Ion Beam (FIB). The FIB emanates from a FIB column and travels along a beam axis within a beam region, which extends from the FIB column to the sample. The system comprises an electron detector configured for detecting the secondary electrons, and a deflecting field configured to deflect a trajectory of the secondary electrons, which were propagating towards the FIB column, to propel away from the beam axis and towards the electron detector. The deflecting field may be configured to divert the trajectory of secondary electrons while the secondary electrons are generally within the beam region.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: June 6, 2017
    Assignee: EL-MUL TECHNOLOGIES LTD.
    Inventors: Eli Cheifetz, Amir Weingarten, Semyon Shofman
  • Publication number: 20170069459
    Abstract: An electron detector assembly configured for detecting electrons emitted from a sample irradiated by an electron beam, comprising a scintillator including a scintillator layer, the scintillator layer emitting light signals corresponding to impingement of electrons thereupon, a light guide plate coupled to the scintillator layer and comprising a peripheral surface, and a single or plurality of silicon photomultiplier devices positioned upon the peripheral surface and arranged perpendicularly or obliquely relative to the scintillating surface, the silicon photomultiplier device being configured to yield an electrical signal from an electron impinging upon the scintillator layer.
    Type: Application
    Filed: September 1, 2016
    Publication date: March 9, 2017
    Inventors: ELI CHEIFETZ, AMIT WEINGARTEN, SEMYON SHOFMAN, SILVIU REINHORN
  • Publication number: 20160086765
    Abstract: An electron detection system for detecting secondary electrons emitted from a sample irradiated by a Focused Ion Beam (FIB). The FIB emanates from a FIB column and travels along a beam axis within a beam region, which extends from the FIB column to the sample. The system comprises an electron detector configured for detecting the secondary electrons, and a deflecting field configured to deflect a trajectory of the secondary electrons, which were propagating towards the FIB column, to propel away from the beam axis and towards the electron detector. The deflecting field may be configured to divert the trajectory of secondary electrons while the secondary electrons are generally within the beam region.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 24, 2016
    Inventors: ELI CHEIFETZ, AMIT WEINGARTEN, SEMYON SHOFMAN
  • Patent number: 9076632
    Abstract: A STEM system is disclosed wherein an imaging system is used to image the electron scatter pattern plane of the HAADF detector onto a two-dimensional array detector. A data acquisition system stores and processes the data from the two-dimensional array detector. For each illumination pixel of the STEM, one frame of data is generated and stored Each frame includes data of all scattered angles and can be analyzed in real time or in off-line at any time after the scan. A method is disclosed for detecting electrons emitted from a sample by detecting electrons scattered from the sample and generating plurality of corresponding signals, each signal indicative of scattering angle of a scattered electron; generating a plurality of signal groups, each signal group being a collection of signals of a user selected scattering angle.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 7, 2015
    Assignee: EL-MUL TECHNOLOGIES LTD.
    Inventors: Silviu Reinhorn, Eli Cheifetz, Amit Weingarten
  • Publication number: 20150034822
    Abstract: A STEM system is disclosed wherein an imaging system is used to image the electron scatter pattern plane of the HAADF detector onto a two-dimensional array detector. A data acquisition system stores and processes the data from the two-dimensional array detector. For each illumination pixel of the STEM, one frame of data is generated and stored Each frame includes data of all scattered angles and can be analyzed in real time or in off-line at any time after the scan. A method is disclosed for detecting electrons emitted from a sample by detecting electrons scattered from the sample and generating plurality of corresponding signals, each signal indicative of scattering angle of a scattered electron; generating a plurality of signal groups, each signal group being a collection of signals of a user selected scattering angle.
    Type: Application
    Filed: February 12, 2013
    Publication date: February 5, 2015
    Inventors: Silviu Reinhorn, Eli Cheifetz, Amit Weingarten
  • Patent number: 7847268
    Abstract: The invention discloses a charged particle detecting apparatus for detecting positive ions, negative ions and electrons emitted from a sample, the apparatus comprising a housing, defining a chamber in its interior, which is confined by conductive walls, and has an opening to the outside of said housing; a grid for selectively attracting charged particles, wherein the grid is electrically biasable with respect to said housing and functionally aligned with said opening; a converter arrangement with a converter surface, which is electrically biasable with respect to the grid and with respect to the housing, and which is positioned such that charged particles attracted into the chamber by the grid impact on the converter surface; an electron detector, which is biasable with respect to the converter surface in such a way that electrons emitted from the converter surface impact on the electron detector.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: December 7, 2010
    Assignee: El-Mul Technologies, Ltd.
    Inventors: Semyon Shofman, Eli Cheifetz, Armin Schon, Eitan Pinhasi
  • Publication number: 20090309021
    Abstract: The invention pertains to a method for imaging a sample by detecting ions emitted from said sample, wherein the emission of the ions to be detected is caused by a scanning particle beam impacting on said sample; and wherein detecting of the ions comprises collecting the ions; converting the collected ions to electrons and detecting the converted electrons by means of an electron detector; characterized in that the particle beam is an electron beam.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 17, 2009
    Applicant: El-Mul Technologies Ltd.
    Inventors: Armin Schon, Eli Cheifetz, Alexander Berezin, Oren Zarchin
  • Publication number: 20090294687
    Abstract: The invention discloses a charged particle detecting apparatus for detecting positive ions, negative ions and electrons emitted from a sample, the apparatus comprising a housing, defining a chamber in its interior, which is confined by conductive walls, and has an opening to the outside of said housing; a grid for selectively attracting charged particles, wherein the grid is electrically biasable with respect to said housing and functionally aligned with said opening; a converter arrangement with a converter surface, which is electrically biasable with respect to the grid and with respect to the housing, and which is positioned such that charged particles attracted into the chamber by the grid impact on the converter surface; an electron detector, which is biasable with respect to the converter surface in such a way that electrons emitted from the converter surface impact on the electron detector.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Applicant: EL-Mul Technologies Ltd
    Inventors: Semyon Shofman, Eli Cheifetz, Armin Schon, Eitan Pinhasi
  • Patent number: 7417235
    Abstract: A multi-purpose efficient charge particle detector that by switching bias voltages measures either secondary ions, or secondary electrons (SE) from a sample, or secondary electrons that originate from back scattered electrons (SE3), is described. The basic version of the detector structure and two stripped down versions enable its use for the following detection combinations: The major version is for measuring secondary ions, or secondary electrons from the sample, or secondary electrons due to back-scattered electrons that hit parts other than the sample together or without secondary electrons from the sample. Measuring secondary ions or secondary electrons from the sample (no SE3). Measuring secondary electrons from the sample and/or secondary electrons resulting from back-scattered electrons hitting objects other than the sample (no ions).
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: August 26, 2008
    Assignee: El-Mul Technologies, Ltd.
    Inventors: Armin Schon, Eli Cheifetz, Semyon Shofman