Patents by Inventor Elizabeth L. Mather

Elizabeth L. Mather has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090048439
    Abstract: Provided are solid supports that contain at least one hydrophilic ligand; and at least one hydrophobic ligand, where amount of the at least one hydrophobic ligand on the solid support relative to the amount of the at least one hydrophilic ligand on the solid support is adjusted for binding target nucleic acid(s) from a sample onto the solid support and/or for eluting the bound target nucleic acid(s) from the solid support, so that the amount of target nucleic acid(s) bound to the solid support and/or recovered after elution from the solid support is about 5% to about 500% greater than the amount of target nucleic acid(s) bound to the solid support and/or recovered from the solid support in the absence of either the at least one hydrophobic ligand or the at least one hydrophilic ligand or both. The solid supports with ligands are used for isolation of nucleic acid molecules from samples.
    Type: Application
    Filed: August 5, 2008
    Publication date: February 19, 2009
    Inventors: William G. Weisburg, Elizabeth L. Mather, Marjan Haghnia
  • Patent number: 6726880
    Abstract: An electronic device for performing biological operations includes a support substrate and an array of microlocations disposed on the substrate. The array of microlocations include electronically addressable electrodes. A first collection electrode is disposed on the substrate and adjacent to a first side of the array of microlocations. A second collection electrode is disposed on the substrate and adjacent to a second side of the array of microlocations, the second side of the array being opposite of the first side such that the array of microlocations is disposed between the first and second collection electrodes. A flow cell is supported on the substrate. Preferably, the combined area of the collection electrodes is a substantial fraction, preferably at least 50% of the area of the footprint of the flow cell.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: April 27, 2004
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Paul D. Swanson, Scott O. Graham, Elizabeth L. Mather, Timothy L. LeClair, William F. Butler
  • Patent number: 6225059
    Abstract: Methods of manufacture and devices for performing active biological operations utilize various structures to advantageously collect and provide charged biological materials to an array of microlocations. In one embodiment, a device includes focusing electrodes to aid in the direction and transport of materials from a collection electrode to an array. Preferably, one or more intermediate transportation electrodes are utilized, most preferably of monotonically decreasing size between the collection electrode and the array, so as to reduce current density mismatches. In another aspect, a flow cell is utilized over devices to provide containment of solution containing materials to be analyzed. Preferably, the volume of the flow cell is more advantageously interrogated through use of relatively large collection and return electrodes, such as where the area of those electrodes relative to the footprint of the flowcell is at least 40%.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: May 1, 2001
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Paul D. Swanson, Scott O. Graham, Elizabeth L. Mather
  • Patent number: 6099803
    Abstract: Methods of manufacture and devices for performing active biological operations utilize various structures to advantageously collect and provide charged biological materials to an array of microlocations. In one embodiment, a device includes focusing electrodes to aid in the direction and transport of materials from a collection electrode to an array. Preferably, one or more intermediate transportation electrodes are utilized, most preferably of monotonically decreasing size between the collection electrode and the array, so as to reduce current density mismatches. In another aspect, a flow cell is utilized over devices to provide containment of solution containing materials to be analyzed. Preferably, the volume of the flow cell is more advantageously interrogated through use of relatively large collection and return electrodes, such as where the area of those electrodes relative to the footprint of the flowcell is at least 40%.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: August 8, 2000
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Paul D. Swanson, Scott O. Graham, Elizabeth L. Mather, Timothy L. LeClair, William F. Butler