Patents by Inventor Elizabeth NEWMAN

Elizabeth NEWMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948093
    Abstract: Techniques for generating and managing, including simulating and training, deep tensor neural networks are presented. A deep tensor neural network comprises a graph of nodes connected via weighted edges. A network management component (NMC) extracts features from tensor-formatted input data based on tensor-formatted parameters. NMC evolves tensor-formatted input data based on a defined tensor-tensor layer evolution rule, the network generating output data based on evolution of the tensor-formatted input data. The network is activated by non-linear activation functions, wherein the weighted edges and non-linear activation functions operate, based on tensor-tensor functions, to evolve tensor-formatted input data. NMC trains the network based on tensor-formatted training data, comparing output training data output from the network to simulated output data, based on a defined loss function, to determine an update.
    Type: Grant
    Filed: October 5, 2022
    Date of Patent: April 2, 2024
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, TRUSTEES OF TUFTS COLLEGE, RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Lior Horesh, Elizabeth Newman, Misha E. Kilmer, Haim Avron
  • Publication number: 20230306276
    Abstract: Techniques for generating and managing, including simulating and training, deep tensor neural networks are presented. A deep tensor neural network comprises a graph of nodes connected via weighted edges. A network management component (NMC) extracts features from tensor-formatted input data based on tensor-formatted parameters. NMC evolves tensor-formatted input data based on a defined tensor-tensor layer evolution rule, the network generating output data based on evolution of the tensor-formatted input data. The network is activated by non-linear activation functions, wherein the weighted edges and non-linear activation functions operate, based on tensor-tensor functions, to evolve tensor-formatted input data. NMC trains the network based on tensor-formatted training data, comparing output training data output from the network to simulated output data, based on a defined loss function, to determine an update.
    Type: Application
    Filed: October 5, 2022
    Publication date: September 28, 2023
    Inventors: Lior Horesh, Elizabeth Newman, Misha E. Kilmer, Haim Avron
  • Patent number: 11531902
    Abstract: Techniques for generating and managing, including simulating and training, deep tensor neural networks are presented. A deep tensor neural network comprises a graph of nodes connected via weighted edges. A network management component (NMC) extracts features from tensor-formatted input data based on tensor-formatted parameters. NMC evolves tensor-formatted input data based on a defined tensor-tensor layer evolution rule, the network generating output data based on evolution of the tensor-formatted input data. The network is activated by non-linear activation functions, wherein the weighted edges and non-linear activation functions operate, based on tensor-tensor functions, to evolve tensor-formatted input data. NMC trains the network based on tensor-formatted training data, comparing output training data output from the network to simulated output data, based on a defined loss function, to determine an update.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 20, 2022
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, TRUSTEES OF TUFTS COLLEGE, RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Lior Horesh, Elizabeth Newman, Misha E. Kilmer, Haim Avron
  • Patent number: 10771088
    Abstract: A tensor decomposition method, system, and computer program product include compressing multi-dimensional data by truncated tensor-tensor decompositions.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: September 8, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, TUFTS UNIVERSITY, TEL AVIV-YAFO UNIVERSITY
    Inventors: Lior Horesh, Misha E Kilmer, Haim Avron, Elizabeth Newman
  • Publication number: 20200280322
    Abstract: A tensor decomposition method, system, and computer program product include compressing multi-dimensional data by truncated tensor-tensor decompositions.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 3, 2020
    Inventors: Lior Horesh, Misha E. Kilmer, Haim Avron, Elizabeth Newman
  • Publication number: 20200151580
    Abstract: Techniques for generating and managing, including simulating and training, deep tensor neural networks are presented. A deep tensor neural network comprises a graph of nodes connected via weighted edges. A network management component (NMC) extracts features from tensor-formatted input data based on tensor-formatted parameters. NMC evolves tensor-formatted input data based on a defined tensor-tensor layer evolution rule, the network generating output data based on evolution of the tensor-formatted input data. The network is activated by non-linear activation functions, wherein the weighted edges and non-linear activation functions operate, based on tensor-tensor functions, to evolve tensor-formatted input data. NMC trains the network based on tensor-formatted training data, comparing output training data output from the network to simulated output data, based on a defined loss function, to determine an update.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Inventors: Lior Horesh, Elizabeth Newman, Misha E. Kilmer, Haim Avron
  • Patent number: 10561365
    Abstract: A system for behavioral monitoring for equines, comprising at least one sensor to measure a signal related to the equine, a database to store at least one parameter of the equine as a function of time, and processing means. The sensor is in communication with the equine, and comprises a wireless transmitter which is in communication with the database. The processing means, in communication with the database, is adapted to (i) determine, from at least one signal from the at least one sensor, at least one parameter of the equine as a function of time; (ii) establish normal behavior of the equine based on the parameter; and (iii) identify at least one abnormal behavior of the equine by identifying at least one deviation from normal behavior.
    Type: Grant
    Filed: November 30, 2014
    Date of Patent: February 18, 2020
    Assignee: SCR ENGINEERS LTD
    Inventor: Elizabeth Newman
  • Publication number: 20160100802
    Abstract: A system for behavioral monitoring for equines, comprising at least one sensor to measure a signal related to the equine, a database to store at least one parameter of the equine as a function of time, and processing means. The sensor is in communication with the equine, and comprises a wireless transmitter which is in communication with the data-base. The processing means, in communication with the database, is adapted to (i) determine, from at least one signal from the at least one sensor, at least one parameter of the equine as a function of time; (ii) establish normal behavior of the equine based on the parameter; and (iii) identify at least one abnormal behavior of the equine by identifying at least one deviation from normal behavior.
    Type: Application
    Filed: November 30, 2014
    Publication date: April 14, 2016
    Applicant: SCR ENGINEERS LTD
    Inventor: Elizabeth NEWMAN