Patents by Inventor Elizabeth Tai

Elizabeth Tai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10533104
    Abstract: Methods for increasing the degree of curing and/or reducing the volatile photoinitiator concentration in cured polymeric film, and particularly in cured polymeric films in a multilayered thin film encapsulation stack are provided. Also provided are highly crosslinked and/or low-outgassing thin polymeric films and encapsulation stacks made using the methods.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: January 14, 2020
    Assignee: Kateeva, Inc.
    Inventors: Brian E. Lassiter, Lorenza Moro, Teresa A. Ramos, Elizabeth Tai, Alonso Serrato, Vera Steinmann
  • Publication number: 20190136075
    Abstract: Methods for increasing the degree of curing and/or reducing the volatile photoinitiator concentration in cured polymeric film, and particularly in cured polymeric films in a multilayered thin film encapsulation stack are provided. Also provided are highly crosslinked and/or low-outgassing thin polymeric films and encapsulation stacks made using the methods.
    Type: Application
    Filed: July 31, 2018
    Publication date: May 9, 2019
    Applicant: Kateeva, Inc.
    Inventors: Brian E. Lassiter, Lorenza Moro, Teresa A. Ramos, Elizabeth Tai, Alonso Serrato, Vera Steinmann
  • Patent number: 9966479
    Abstract: The present invention is directed to a paste composition comprising Al and Sn dispersed in an organic medium and to paste compositions that provide a solderable electrode. The present invention is further directed to an electrode formed from the paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. The paste compositions that provide a solderable electrode are particularly useful for forming a solar cell back side solderable electrode.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: May 8, 2018
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Elena V Rogojina, Gonghou Wang, Elizabeth Tai, Maxim Kelman
  • Patent number: 9496136
    Abstract: A silicon nanoparticle fluid including a) a set of silicon nanoparticles present in an amount of between about 1 wt % and about 20 wt % of the silicon nanoparticie fluid; b) a set of HMW binder molecules present in an amount of between about 0 wt % and about 10 wt % of the silicon nanoparticle fluid; and c) a set of capping agent molecules, such that at least some capping agent molecules are attached to the set of silicon nanoparticles. Preferably, the silicon nanoparticle fluid is a shear thinning fluid.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 15, 2016
    Assignee: Innovalight, Inc.
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Patent number: 9306087
    Abstract: A method for manufacturing a photovoltaic cell with a locally diffused rear side, comprising steps of: (a) providing a doped silicon substrate, the substrate comprising a front, sunward facing, surface and a rear surface; (b) forming a silicon dioxide layer on the front surface and the rear surface; (c) depositing a boron-containing doping paste on the rear surface in a pattern, the boron-containing paste comprising a boron compound and a solvent; (d) depositing a phosphorus-containing doping paste on the rear surface in a pattern, the phosphorus-containing doping paste comprising a phosphorus compound and a solvent; (e) heating the silicon substrate in an ambient to a first temperature and for a first time period in order to locally diffuse boron and phosphorus into the rear surface of the silicon substrate.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: April 5, 2016
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Giuseppe Scardera, Maxim Kelman, Elena V Rogojina, Dmitry Poplavskyy, Elizabeth Tai, Gonghou Wang
  • Publication number: 20150364615
    Abstract: The present invention is directed to a paste composition comprising Al and Sn dispersed in an organic medium and to paste compositions that provide a solderable electrode. The present invention is further directed to an electrode formed from the paste composition and a semiconductor device and, in particular, a solar cell comprising such an electrode. The paste compositions that provide a solderable electrode are particularly useful for forming a solar cell back side solderable electrode.
    Type: Application
    Filed: May 18, 2015
    Publication date: December 17, 2015
    Inventors: ELENA V. ROGOJINA, GONGHOU WANG, ELIZABETH TAI, MAXIM KELMAN
  • Publication number: 20140065764
    Abstract: A method for manufacturing a photovoltaic cell with a locally diffused rear side, comprising steps of: (a) providing a doped silicon substrate, the substrate comprising a front, sunward facing, surface and a rear surface; (b) forming a silicon dioxide layer on the front surface and the rear surface; (c) depositing a boron-containing doping paste on the rear surface in a pattern, the boron-containing paste comprising a boron compound and a solvent; (d) depositing a phosphorus-containing doping paste on the rear surface in a pattern, the phosphorus-containing doping paste comprising a phosphorus compound and a solvent; (e) heating the silicon substrate in an ambient to a first temperature and for a first time period in order to locally diffuse boron and phosphorus into the rear surface of the silicon substrate.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: INNOVALIGHT INC
    Inventors: Giuseppe Scardera, Maxim Kelman, Elena V. Rogojina, Dmitry Poplavskyy, Elizabeth Tai, Gonghou Wang
  • Patent number: 7910393
    Abstract: A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles—comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 22, 2011
    Assignee: Innovalight, Inc.
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Publication number: 20110012066
    Abstract: A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles-comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Publication number: 20100136771
    Abstract: A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles—comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
    Type: Application
    Filed: June 29, 2009
    Publication date: June 3, 2010
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Patent number: 7160633
    Abstract: Poly-siloxane material may be used to form an insulating structure in an organic light-emitting device (OLED). In addition to the insulating structure, an OLED may have an electro-luminescent organic layer separated into light-emitting elements, e.g., display pixels, arranged between electrode layers. A voltage applied across the electrode layers causes the device to emit light. One type of insulating structure may be a bank structure formed from a thin sheet of poly-siloxane with apertures corresponding to the display pixels. Pixels may be formed with the deposit of one or more layers of organic material into the apertures. Another type of-insulating structure may be one or more insulating strips, which may separate an electrode layer into electrode strips during construction and/or insulate electrode strips while the OLED is in operation.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: January 9, 2007
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Elizabeth Tai, Matthias Stocssel
  • Publication number: 20040096697
    Abstract: Poly-siloxane material may be used to form an insulating structure in an organic light-emitting device (OLED). In addition to the insulating structure, an OLED may have an electro-luminescent organic layer separated into light-emitting elements, e.g., display pixels, arranged between electrode layers. A voltage applied across the electrode layers causes the device to emit light. One type of insulating structure may be a bank structure formed from a thin sheet of poly-siloxane with apertures corresponding to the display pixels. Pixels may be formed with the deposit of one or more layers of organic material into the apertures. Another type of-insulating structure may be one or more insulating strips, which may separate an electrode layer into electrode strips during construction and/or insulate electrode strips while the OLED is in operation.
    Type: Application
    Filed: November 6, 2003
    Publication date: May 20, 2004
    Inventors: Elizabeth Tai, Matthias Stocssel
  • Patent number: 6656611
    Abstract: Poly-siloxane material may be used to form an insulating structure in an organic light-emitting device (OLED). In addition to the insulating structure, an OLED may have an electro-luminescent organic layer separated into light-emitting elements, e.g., display pixels, arranged between electrode layers. A voltage applied across the electrode layers causes the device to emit light. One type of insulating structure may be a bank structure formed from a thin sheet of poly-siloxane with apertures corresponding to the display pixels. Pixels may be formed with the deposit of one or more layers of organic material into the apertures. Another type of insulating structure may be one or more insulating strips, which may separate an electrode layer into electrode strips during construction and/or insulate electrode strips while the OLED is in operation.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: December 2, 2003
    Assignee: Osram OPTO Semiconductors GmbH
    Inventors: Elizabeth Tai, Matthias Stoessel
  • Publication number: 20030017360
    Abstract: Poly-siloxane material may be used to form an insulating structure in an organic light-emitting device (OLED). In addition to the insulating structure, an OLED may have an electro-luminescent organic layer separated into light-emitting elements, e.g., display pixels, arranged between electrode layers. A voltage applied across the electrode layers causes the device to emit light. One type of insulating structure may be a bank structure formed from a thin sheet of poly-siloxane with apertures corresponding to the display pixels. Pixels may be formed with the deposit of one or more layers of organic material into the apertures. Another type of insulating structure may be one or more insulating strips, which may separate an electrode layer into electrode strips during construction and/or insulate electrode strips while the OLED is in operation.
    Type: Application
    Filed: July 20, 2001
    Publication date: January 23, 2003
    Inventors: Elizabeth Tai, Matthias Stoessel