Patents by Inventor Emad Andarawis

Emad Andarawis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8765524
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: July 1, 2014
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, David Mulford Shaddock, Emad Andarawis Andarawis, Peter Micah Sandvik, Stephen Daley Arthur, Vinayak Tilak
  • Patent number: 8718979
    Abstract: A high accuracy wireless sensing platform assembly comprising a sensor subassembly that is configured to obtain measurement data from a device in response to a measurand; a data transceiver assembly that is configured to communicate with an antenna assembly; a parameter coder, in communication with the sensor subassembly, that is configured to control the data transceiver assembly and/or the sensor subassembly, based on the measurement data; and a resonant circuit that is formed by the data transceiver, the sensor subassembly, and/or the parameter coder. Embodiments are capable of provide robust performance and high accuracy in harsh (e.g., hot environments). The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 6, 2014
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Emad Andarawis Andarawis, Vinayak Tilak
  • Publication number: 20140119884
    Abstract: A capacitive sensor device and a method of manufacture are provided. The capacitive sensor device includes at least one sensor tip that includes an electrode positioned at a first end of the sensor tip, and a stem member coupled to the electrode and extending toward a second end of the sensor tip. The device also includes a coaxial cable including a center conductor, the center conductor coupled to the sensor tip at the second end, and an insulation layer supporting the sensor tip between the first and second ends. The insulation layer includes a metallization on a portion surrounding the second end of the sensor tip. The device further includes a casing surrounding a portion of the coaxial cable, the metallization, and the coupling of the center conductor and the sensor tip, wherein a braze joint is formed between the casing and the metallization to form a hollow, hermetic cavity.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Richard Esler, Emad Andarawis Andarawis, Wayne Charles Hasz, Mahadevan Balasubramaniam
  • Publication number: 20140036463
    Abstract: An apparatus includes a substrate and a plurality of conductive traces formed on the substrate. The conductive traces are doped with a concentration of an aluminum material forming a protective layer as a portion of the plurality of conductive traces to inhibit oxidation. A set of first metal contact pads are formed in contact with the plurality of conductive traces. The substrate, the plurality of conductive traces and the set of first metal contact pads define an electronic circuit board configured to operate at a temperature greater than 200 degrees Celsius. A high operating temperature electronic device is configured in electrical communication with the conductive traces defining an assembly configured to operate at a temperature greater than 200 degrees Celsius.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Mulford Shaddock, Emad Andarawis Andarawis
  • Publication number: 20130334612
    Abstract: An integrated circuit includes a plurality of transistors. Each transistor is associated with a corresponding body terminal. At least one transistor is reverse biased at a first voltage level, and at least one other transistor is reverse biased at a second voltage level that is different from the first voltage level. Each body terminal is electrically isolated from every other body terminal via an isolation barrier. A transistor that is reverse biased at the first voltage level is electrically connected to a transistor that is reverse biased at the second voltage level, such that the electrically connected transistors operate to interact with each other while the respective body voltage levels are different from each other and are changing independently of each other during operation of the integrated circuit.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 19, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Cheng-Po Chen, Emad Andarawis Andarawis, Vinayak Tilak, Zachary Matthew Stum
  • Publication number: 20130328064
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Avinash Srikrishnan Kashyap, David Mulford Shaddock, Emad Andarawis Andarawis, Peter Micah Sandvik, Stephen Daley Arthur, Vinayak Tilak
  • Patent number: 8601880
    Abstract: A strain sensor comprises a transmitting element; a receiving element wirelessly coupled to the transmitting element; and a modulating element located on a rotating component, wherein the modulating element modulates the wireless coupling between the transmitting element and the receiving element, wherein the modulation of the wireless coupling is indicative of strain on the rotating component. A method of detecting strain in a rotating component of a rotary machine comprises wirelessly coupling a transmitting element and a receiving element; modulating the coupling with a modulating element located on the rotating component; and calculating the strain in the rotating component based on the modulation of the coupling.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: Ertugrul Berkcan, Emad Andarawis Andarawis
  • Publication number: 20130321000
    Abstract: A radial clearance measurement system is provided. The radial clearance measurement system comprises a radial clearance sensor that is relatively insensitive to axial movement of an object rotating relative to the radial clearance sensor. In one embodiment, the radial clearance sensor includes an electrode having a relatively constant overlap area over the range of axial movement of the object.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: General Electric Company
    Inventors: Emad Andarawis Andarawis, Wayne Charles Hasz, Mahadevan Balasubramaniam, David Richard Esler
  • Publication number: 20130312533
    Abstract: A wireless sensor including a resistive element, a modulating element located on a rotating component and at least one of a transmitting element and a receiving element, wirelessly coupled to the modulating element. The modulating element is configured to modulate the wireless coupling, between the at least one of a transmitting element and a receiving element, in response to a change in resistance in the resistive element. The modulation of the wireless coupling is indicative of a measurand on the rotating component. A method of detecting a measurand in a rotating component of a rotary machine includes wirelessly coupling at least one of a transmitting element and a receiving element to a modulating element; modulating the wireless coupling with the modulating element located on the rotating component; and calculating the measurand in the rotating component based on the modulation of the wireless coupling.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 28, 2013
    Applicant: General Electric Company
    Inventors: Ertugrul Berkcan, Emad Andarawis Andarawis
  • Patent number: 8591188
    Abstract: A clearance sensing system for a rotating machine includes a plurality of sensor probes disposed within a stationary shroud of the rotating machine. Each of the plurality of sensor probes is adapted to measure a parameter indicative of an axial and a radial displacement of a rotating component within the shroud and to produce a signal that corresponds to the parameter. In certain embodiments, this parameter may include a capacitance between the rotating component and the sensor probe. The clearance sensing system further includes a circuit that receives the signal from each of the plurality of sensor probes and determines (a) the axial displacement of the rotating component within the shroud and (b) a radial displacement of the rotating component relative to the shroud.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: November 26, 2013
    Assignee: General Electric Company
    Inventors: Minesh Ashok Shah, Mahadevan Balasubramaniam, Philip Paul Beauchamp, Todd Alan Anderson, Samhita Dasgupta, David Mulford Shaddock, Emad Andarawis Andarawis
  • Publication number: 20130258541
    Abstract: A method of method of forming a wide band-gap semiconductor transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a connecting component configured to electrically couple a first electrical component to a second electrical component located remotely from the first electrical component through one or more electrical conduits and a transient voltage suppressor device positioned within the connecting component and electrically coupled to the one or more electrical conduits wherein the TVS device includes a wide band-gap semiconductor material.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Aaron Jay Knobloch, Emad Andarawis Andarawis, Harry Kirk Mathews, JR., Avinash Srikrishnan Kashyap
  • Publication number: 20130255220
    Abstract: In one embodiment, a gas turbine engine control system includes an engine controller configured to control multiple parameters associated with operation of a gas turbine engine system. The gas turbine engine control system also includes multiple remote interface units communicatively coupled to the engine controller. The remote interface unit is configured to receive an input signal from the engine controller indicative of respective target values of at least one parameter, and the remote interface unit is configured to provide closed-loop control of the at least one parameter based on the input signal and feedback signals indicative of respective measured values of the at least one parameter.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: General Electric Company
    Inventors: Harry Kirk Mathews, JR., Brent Jerome Brunell, Simon Shlomo Lis, R. Sheldon Carpenter, Samhita Dasgupta, Sridhar Adibhatla, Scott Douglas Waun, Emad Andarawis Andarawis
  • Publication number: 20130240903
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The transient voltage suppressor (TVS) assembly includes a semiconductor die including a contact surface on a single side of the die, the die further including a substrate comprising a layer of at least one of an electrical insulator material, a semi-insulating material, and a first wide band gap semiconductor having a conductivity of a first polarity, at least a TVS device including a plurality of wide band gap semiconductor layers formed on the substrate; a first electrode coupled in electrical contact with the TVS device and extending to the contact surface, and a second electrode electrically coupled to the substrate extending to the contact surface.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Inventors: Avinash Srikrishnan Kashyap, Emad Andarawis Andarawis, David Mulford Shaddock
  • Patent number: 8536674
    Abstract: A method includes providing a substrate with at least one semiconducting layer. The method also includes forming a plurality of isolation barriers within the at least one semiconducting layer, thereby forming a plurality of device islands. The method further includes inserting a plurality of electronic devices into a portion of the at least one semiconducting layer such that each electronic device is substantially isolated from each other electronic device by the device islands.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Cheng-Po Chen, Emad Andarawis Andarawis, Vinayak Tilak, Zachary Stum
  • Patent number: 8534553
    Abstract: A device for conducting rail car inspections including an inspection module, an imaging module, a scanner module, a location module, a printer module and a communication module.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Prescott Logan, David Davenport, John Hershey, Rahul Bhotika, Robert Mitchell, Emad Andarawis, Kenneth Welles, Robert Alan Wetzel
  • Patent number: 8536878
    Abstract: A sensor system for measuring a clearance parameter between a stationary component and a rotating component of a rotating machine is provided. The system includes a clearance sensor to output a clearance measurement signal. A sensor memory is attached to the sensor for storing a first sensor information. A second sensor information is stored in a electronics interface memory. The first and the second sensor information are read and the clearance sensor is matched with a respective plurality of calibration data by an electronic interface based on the first and the second sensor information.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Emad Andarawis Andarawis, Wayne Charles Hasz, David So Keung Chan, David Mulford Shaddock, John Harry Down, Samhita Dasgupta, David Walter Parry, David Richard Esler, Zhiyuan Ren, Mahadevan Balasubramaniam, Cheryl Herron
  • Patent number: 8530902
    Abstract: A method of forming a silicon carbide transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a semiconductor die in a mesa structure that includes a first layer of a first wide band gap semiconductor having a conductivity of a first polarity, a second layer of the first or a second wide band gap semiconductor having a conductivity of a second polarity coupled in electrical contact with the first layer wherein the second polarity is different than the first polarity. The TVS assembly also includes a third layer of the first, the second, or a third wide band gap semiconductor having a conductivity of the first polarity coupled in electrical contact with the second layer. The layer having a conductivity of the second polarity is lightly doped relative to the layers having a conductivity of the first polarity.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Avinash Srikrishnan Kashyap, David Mulford Shaddock, Emad Andarawis Andarawis, Peter Micah Sandvik, Stephen Daley Arthur, Vinayak Tilak
  • Publication number: 20130226527
    Abstract: A system and method for determining physiological parameters based on electrical impedance measurements is provided. One method includes obtaining electrical measurement signals acquired from a plurality of transducers coupled to a surface of an object and spatially pre-conditioning the obtained electrical measurement signals. The method also includes performing multiple-input-multiple-output (MIMO) analog to information conversion (AIC) of the spatially pre-conditioned electrical measurement signals to correlate the spatially pre-conditioned electrical measurement signals to separate the electrical measurement signals.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: General Electric Company
    Inventors: Amit Satish Gore, Jeffrey Michael Ashe, Emad Andarawis Andarawis
  • Patent number: 8482306
    Abstract: A system to measure thickness of a shroud is provided. The system includes at least one resistive element embedded within the shroud. A reduction in a cross-sectional area of the at least one resistive due to wearing out of the shroud results in a change in a resistance of the at least one resistive. The system also includes an impedance measurement device that measures a total resistance associated with the at least one resistive element.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: Emad Andarawis Andarawis, Chukwueloka Obiora Umeh
  • Publication number: 20130173213
    Abstract: A method and apparatus for determining axial clearance data between a rotor and a stator are disclosed. At least one radial clearance sensor is positioned on the stator and is configured to gather radial clearance data, i.e., measurements of a radial distance between the rotor and the stator taken at discrete time intervals. A computing device is operably connected with the at least one radial clearance sensor and is configured to use the radial clearance data to determine axial clearance data, i.e., an axial distance between the stator and the rotor. In one embodiment, the computing device uses, among other data points, an indication of a loss of signal from at least one radial clearance sensor to extrapolate the axial clearance data.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Fred Thomas Willett, JR., Emad Andarawis Andarawis