Patents by Inventor Emanuel Cohen

Emanuel Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11864511
    Abstract: The present invention is directed to melon plant and seed, namely of C. melo subsp. melo. which are resistant to ToLCNDV, comprising in their genome introgressed sequences from C. melo subsp. agrestis var. acidulous conferring resistance to said virus, when present homozygously. The introgressed sequences are preferably characterized by defined alleles of SNPs on chromosome 11, inter alia allele A of SNP Melon_sbg_14207_58 (SEQ ID No:9). The introgressed sequences can be chosen from those present in the genome of a plant of ToLR1 accession number NCIMB 42506. The invention is also directed to parts of these resistant plants, as well as progeny, to the use of these plants for introgressing the resistance in another genetic background, as well as to different methods for obtaining resistant melon plants or seeds.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: January 9, 2024
    Assignee: VILMORIN & CIE
    Inventors: Zahi Paz, Emanuel Cohen, Imri Ben-Israel
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20210195859
    Abstract: The present invention is directed to melon plant and seed, namely of C. melo subsp. melo, which are resistant to ToLCNDV, comprising in their genome introgressed sequences from C. melo subsp. agrestis var. acidulous conferring resistance to said virus, when present homozygously. The introgressed sequences are preferably characterized by defined alleles of SNPs on chromosome 11, inter alia allele A of SNP Melon_sbg_14207_58 (SEQ ID No:9). The introgressed sequences can be chosen from those present in the genome of a plant of ToLR1 accession number NCIMB 42506. The invention is also directed to parts of these resistant plants, as well as progeny, to the use of these plants for introgressing the resistance in another genetic background, as well as to different methods for obtaining resistant melon plants or seeds.
    Type: Application
    Filed: February 24, 2021
    Publication date: July 1, 2021
    Applicant: Vilmorin & Cie
    Inventors: Zahi Paz, Emanuel Cohen, Imri Ben-Israel
  • Patent number: 10939628
    Abstract: The present invention is directed to melon plant and seed, namely of C. melo subsp. melo, which are resistant to ToLCNDV, comprising in their genome introgressed sequences from C. melo subsp. agrestis var. acidulous conferring resistance to said virus, when present homozygously. The introgressed sequences are preferably characterized by defined alleles of SNPs on chromosome 11, inter alia allele A of SNP Melon_sbg_14207_58 (SEQ ID No:9). The introgressed sequences can be chosen from those present in the genome of a plant of ToLR1 accession number NCIMB 42506. The invention is also directed to parts of these resistant plants, as well as progeny, to the use of these plants for introgressing the resistance in another genetic background, as well as to different methods for obtaining resistant melon plants or seeds.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: March 9, 2021
    Assignee: Vilmorin & Cie
    Inventors: Zahi Paz, Emanuel Cohen, Imri Ben-Israel
  • Publication number: 20200178485
    Abstract: The present invention is directed to melon plant and seed, namely of C. melo subsp. melo, which are resistant to ToLCNDV, comprising in their genome introgressed sequences from C. melo subsp. agrestis var. acidulous conferring resistance to said virus, when present homozygously. The introgressed sequences are preferably characterized by defined alleles of SNPs on chromosome 11, inter alia allele A of SNP Melon_sbg_14207_58 (SEQ ID No:9). The introgressed sequences can be chosen from those present in the genome of a plant of ToLR1 accession number NCIMB 42506. The invention is also directed to parts of these resistant plants, as well as progeny, to the use of these plants for introgressing the resistance in another genetic background, as well as to different methods for obtaining resistant melon plants or seeds.
    Type: Application
    Filed: December 28, 2016
    Publication date: June 11, 2020
    Applicant: Vilmorin & Cie
    Inventors: Zahi Paz, Emanuel Cohen, Imri Ben-Israel
  • Patent number: 10680788
    Abstract: Embodiments of the present disclosure may relate to a transceiver to transmit and receive concurrently radio frequency (RF) signals via a dielectric waveguide. In embodiments, the transceiver may include a transmitter to transmit to a paired transceiver a channelized radio frequency (RF) transmit signal via the dielectric waveguide. A receiver may receive from the paired transceiver a channelized RF receive signal via the dielectric waveguide. In embodiments, the channelized RF receive signal may include an echo of the channelized RF transmit signal. The transceiver may further include an echo suppression circuit to suppress from the channelized RF receive signal the echo of the channelized RF transmit signal. In some embodiments, the channelized RF transmit signal and the channelized RF receive signal may be within a frequency range of approximately 30 gigahertz (GHz) to approximately 1 terahertz (THz), and the transceiver may provide full-duplex millimeter-wave communication.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 9, 2020
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Telesphor Kamgaing, Emanuel Cohen, Sasha N. Oster
  • Patent number: 10608591
    Abstract: An apparatus for providing a supply control signal for a supply unit, the supply unit being configured to provide a variable controlled power supply to the power amplifier. The apparatus includes a determination module configured to determine a deviation of a signal from at least one nominal value; and an adjustment module configured to provide the supply control signal after an adjustment based on the determined deviation.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 31, 2020
    Assignee: Intel IP Corporation
    Inventor: Emanuel Cohen
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10404499
    Abstract: Embodiments of the present disclosure may relate to a transmitter that includes a baseband dispersion compensator to perform baseband dispersion compensation on an input signal. Embodiments may also include a receiver that includes a radio frequency (RF) dispersion compensator to perform RF dispersion compensation. Embodiments may also include a dielectric waveguide coupled with the transmitter and the receiver, the dielectric waveguide to convey the RF signal from the transmitter to the receiver. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: September 3, 2019
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Emanuel Cohen, Sasha N. Oster, Telesphor Kamgaing
  • Patent number: 10396839
    Abstract: A system using multiple communication technologies for concurrent communication is disclosed. The system includes a loopback receiver, a receiver, and a noise remover component. The loopback receiver is configured to obtain a coupled signal and generate a noise signal from the coupled signal. The noise signal includes direct transmission noise. The receiver is configured to receive a chain receive signal and to provide a receive signal therefrom. The noise remover component is configured to generate a wanted receive signal from the noise signal and the receive signal.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: August 27, 2019
    Assignee: Intel IP Corporation
    Inventors: Emanuel Cohen, Nati Dinur
  • Patent number: 10327268
    Abstract: A microelectronic package is described with a wireless interconnect for chip-to-chip communication. In one example, the package includes an integrated circuit chip, a package substrate to carry the integrated circuit chip, the package substrate having conductive connectors to connect the integrated circuit chip to external components, a radio coupled to the integrated circuit chip to receive data from the integrated circuit chip and modulate the data onto a radio frequency carrier, and an antenna on the package substrate coupled to the radio to send the modulated data over the carrier to an external device.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 18, 2019
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Adel A. Elsherbini, Emanuel Cohen
  • Patent number: 10277322
    Abstract: Embodiments of the present disclosure may relate to a transmitter to transmit a radio frequency (RF) signal to a receiver via a dielectric waveguide where the transmitter includes a plurality of mixers to generate modulated RF signals and a combiner to combine the modulated RF signals. Embodiments may also include a receiver to receive, from a dielectric waveguide, a RF signal where the receiver includes a splitter to split the RF signal into a plurality of signal paths, a plurality of filters, and a plurality of demodulators. Embodiments may also include a dielectric waveguide communication apparatus that may include the transmitter and the receiver. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 30, 2019
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Sasha N. Oster, Telesphor Kamgaing, Emanuel Cohen
  • Publication number: 20190068228
    Abstract: A system using multiple communication technologies for concurrent communication is disclosed. The system includes a loopback receiver, a receiver, and a noise remover component. The loopback receiver is configured to obtain a coupled signal and generate a noise signal from the coupled signal. The noise signal includes direct transmission noise. The receiver is configured to receive a chain receive signal and to provide a receive signal therefrom. The noise remover component is configured to generate a wanted receive signal from the noise signal and the receive signal.
    Type: Application
    Filed: October 31, 2018
    Publication date: February 28, 2019
    Inventors: Emanuel Cohen, Nati Dinur
  • Publication number: 20190013924
    Abstract: Embodiments of the present disclosure may relate to a transceiver to transmit and receive concurrently radio frequency (RF) signals via a dielectric waveguide. In embodiments, the transceiver may include a transmitter to transmit to a paired transceiver a channelized radio frequency (RF) transmit signal via the dielectric waveguide. A receiver may receive from the paired transceiver a channelized RF receive signal via the dielectric waveguide. In embodiments, the channelized RF receive signal may include an echo of the channelized RF transmit signal. The transceiver may further include an echo suppression circuit to suppress from the channelized RF receive signal the echo of the channelized RF transmit signal. In some embodiments, the channelized RF transmit signal and the channelized RF receive signal may be within a frequency range of approximately 30 gigahertz (GHz) to approximately 1 terahertz (THz), and the transceiver may provide full-duplex millimeter-wave communication.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 10, 2019
    Inventors: Georgios C. Dogiamis, Telesphor Kamgaing, Emanuel Cohen, Sasha N. Oster
  • Patent number: 10128879
    Abstract: A system using multiple communication technologies for concurrent communication is disclosed. The system includes a loopback receiver, a receiver, and a noise remover component. The loopback receiver is configured to obtain a coupled signal and generate a noise signal from the coupled signal. The noise signal includes direct transmission noise. The receiver is configured to receive a chain receive signal and to provide a receive signal therefrom. The noise remover component is configured to generate a wanted receive signal from the noise signal and the receive signal.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: November 13, 2018
    Assignee: Intel IP Corporation
    Inventors: Emanuel Cohen, Nati Dinur
  • Publication number: 20180316434
    Abstract: Embodiments of the present disclosure may relate to a transmitter to transmit a radio frequency (RF) signal to a receiver via a dielectric waveguide where the transmitter includes a plurality of mixers to generate modulated RF signals and a combiner to combine the modulated RF signals. Embodiments may also include a receiver to receive, from a dielectric waveguide, a RF signal where the receiver includes a splitter to split the RF signal into a plurality of signal paths, a plurality of filters, and a plurality of demodulators. Embodiments may also include a dielectric waveguide communication apparatus that may include the transmitter and the receiver. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 1, 2018
    Inventors: Georgios C. Dogiamis, Sasha N. Oster, Telesphor Kamgaing, Emanuel Cohen
  • Patent number: 10079668
    Abstract: Embodiments of the present disclosure may relate to a transceiver to transmit and receive concurrently radio frequency (RF) signals via a dielectric waveguide. In embodiments, the transceiver may include a transmitter to transmit to a paired transceiver a channelized radio frequency (RF) transmit signal via the dielectric waveguide. A receiver may receive from the paired transceiver a channelized RF receive signal via the dielectric waveguide. In embodiments, the channelized RF receive signal may include an echo of the channelized RF transmit signal. The transceiver may further include an echo suppression circuit to suppress from the channelized RF receive signal the echo of the channelized RF transmit signal. In some embodiments, the channelized RF transmit signal and the channelized RF receive signal may be within a frequency range of approximately 30 gigahertz (GHz) to approximately 1 terahertz (THz), and the transceiver may provide full-duplex millimeter-wave communication.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: September 18, 2018
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Telesphor Kamgaing, Emanuel Cohen, Sasha N. Oster