Patents by Inventor Emanuel Tito Mendes Machado

Emanuel Tito Mendes Machado has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11441999
    Abstract: The present disclosure relates to optical crosstalk reduction in particle processing (e.g., cytometry including flow cytometry using microfluidic based sorters, drop formation based sorters, and/or cell purification) systems and methods in order to improve performance. More particularly, the present disclosure relates to assemblies, systems and methods for minimizing optical crosstalk during the analyzing, sorting, and/or processing (e.g., purifying, measuring, isolating, detecting, monitoring and/or enriching) of particles (e.g., cells, microscopic particles, etc.). The exemplary systems and methods for crosstalk reduction in particle processing systems (e.g., cell purification systems) may be particularly useful in the area of cellular medicine or the like. The systems and methods may be modular and used singly or in combination to optimize cell purification based on the crosstalk environment and specific requirements of the operator and/or system.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: September 13, 2022
    Assignee: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Donald Francis Perrault, Jr., Emanuel Tito Mendes Machado, Blair D. Morad
  • Publication number: 20190360912
    Abstract: The present disclosure relates to optical crosstalk reduction in particle processing (e.g., cytometry including flow cytometry using microfluidic based sorters, drop formation based sorters, and/or cell purification) systems and methods in order to improve performance. More particularly, the present disclosure relates to assemblies, systems and methods for minimizing optical crosstalk during the analyzing, sorting, and/or processing (e.g., purifying, measuring, isolating, detecting, monitoring and/or enriching) of particles (e.g., cells, microscopic particles, etc.). The exemplary systems and methods for crosstalk reduction in particle processing systems (e.g., cell purification systems) may be particularly useful in the area of cellular medicine or the like. The systems and methods may be modular and used singly or in combination to optimize cell purification based on the crosstalk environment and specific requirements of the operator and/or system.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 28, 2019
    Inventors: Johnathan Charles Sharpe, Donald Francis Perrault, JR., Emanuel Tito Mendes Machado, Blair D. Morad
  • Patent number: 10371621
    Abstract: The present disclosure relates to optical crosstalk reduction in particle processing (e.g., cytometry including flow cytometry using microfluidic based sorters, drop formation based sorters, and/or cell purification) systems and methods in order to improve performance. More particularly, the present disclosure relates to assemblies, systems and methods for minimizing optical crosstalk during the analyzing, sorting, and/or processing (e.g., purifying, measuring, isolating, detecting, monitoring and/or enriching) of particles (e.g., cells, microscopic particles, etc.). The exemplary systems and methods for crosstalk reduction in particle processing systems (e.g., cell purification systems) may be particularly useful in the area of cellular medicine or the like. The systems and methods may be modular and used singly or in combination to optimize cell purification based on the crosstalk environment and specific requirements of the operator and/or system.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 6, 2019
    Assignee: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Donald Francis Perrault, Jr., Emanuel Tito Mendes Machado, Blair D. Morad
  • Patent number: 10274414
    Abstract: Systems, methods and non-transitory storage medium are disclosed herein for adjusting an output of a particle inspection system representative of a particle characteristic for a particle flowing in a flow-path of a particle processing system. More particularly, the output may be processed and a calibrated output of the particle characteristic generated. In other embodiments, one or more calibration particles are used. Thus, an output of a particle inspection system representative of a particle characteristic for one or more calibration particles flowing in a flow-path of a particle processing system may be compared relative to a standard and an action may be taken based on a result of the comparing the output to the standard.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: April 30, 2019
    Assignee: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Rudolf Hulspas
  • Patent number: 10197493
    Abstract: A microfluidic multiple channel particle analysis system which allows particles from a plurality of particle sources to be independently simultaneously entrained in a corresponding plurality of fluid streams for analysis and sorting into particle subpopulations based upon one or more particle characteristics.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 5, 2019
    Assignee: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Blair D. Morad, Rudolf Hulspas, Donald Francis Perrault, Jr.
  • Publication number: 20170343467
    Abstract: A microfluidic multiple channel particle analysis system which allows particles from a plurality of particle sources to be independently simultaneously entrained in a corresponding plurality of fluid streams for analysis and sorting into particle subpopulations based upon one or more particle characteristics.
    Type: Application
    Filed: April 10, 2017
    Publication date: November 30, 2017
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Blair D. Morad, Rudolf Hulspas, Donald Francis Perrault, JR.
  • Patent number: 9618442
    Abstract: A microfluidic multiple channel particle analysis system which allows particles from a plurality of particle sources to be independently simultaneously entrained in a corresponding plurality of fluid streams for analysis and sorting into particle subpopulations based upon one or more particle characteristics.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: April 11, 2017
    Assignee: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Blair D. Morad, Rudolf Hulspas, Donald Francis Perrault, Jr.
  • Publication number: 20160327469
    Abstract: The present disclosure relates to optical crosstalk reduction in particle processing (e.g., cytometry including flow cytometry using microfluidic based sorters, drop formation based sorters, and/or cell purification) systems and methods in order to improve performance. More particularly, the present disclosure relates to assemblies, systems and methods for minimizing optical crosstalk during the analyzing, sorting, and/or processing (e.g., purifying, measuring, isolating, detecting, monitoring and/or enriching) of particles (e.g., cells, microscopic particles, etc.). The exemplary systems and methods for crosstalk reduction in particle processing systems (e.g., cell purification systems) may be particularly useful in the area of cellular medicine or the like. The systems and methods may be modular and used singly or in combination to optimize cell purification based on the crosstalk environment and specific requirements of the operator and/or system.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 10, 2016
    Inventors: Johnathan Charles Sharpe, Donald Francis Perrault, JR., Emanuel Tito Mendes Machado, Blair D. Morad
  • Patent number: 9335247
    Abstract: The present disclosure relates to optical crosstalk reduction in particle processing (e.g., cytometry including flow cytometry using microfluidic based sorters, drop formation based sorters, and/or cell purification) systems and methods in order to improve performance. More particularly, the present disclosure relates to assemblies, systems and methods for minimizing optical crosstalk during the analyzing, sorting, and/or processing (e.g., purifying, measuring, isolating, detecting, monitoring and/or enriching) of particles (e.g., cells, microscopic particles, etc.). The exemplary systems and methods for crosstalk reduction in particle processing systems (e.g., cell purification systems) may be particularly useful in the area of cellular medicine or the like. The systems and methods may be modular and used singly or in combination to optimize cell purification based on the crosstalk environment and specific requirements of the operator and/or system.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 10, 2016
    Assignee: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Donald Francis Perrault, Jr., Emanuel Tito Mendes Machado, Blair D. Morad
  • Publication number: 20150276576
    Abstract: A microfluidic multiple channel particle analysis system which allows particles from a plurality of particle sources to be independently simultaneously entrained in a corresponding plurality of fluid streams for analysis and sorting into particle subpopulations based upon one or more particle characteristics.
    Type: Application
    Filed: June 15, 2015
    Publication date: October 1, 2015
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Blair D. Morad, Rudolf Hulspas, Donald Francis Perrault, JR.
  • Patent number: 9057676
    Abstract: A microfluidic multiple channel particle analysis system (1) which allows particles (2) from a plurality of particle sources (3) to be independently simultaneously entrained in a corresponding plurality of fluid streams (4) for analysis and sorting into particle subpopulations (5) based upon one or more particle characteristics (6).
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: June 16, 2015
    Assignee: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Blair Morad, Rudolf Hulspas, Donald Francis Perrault, Jr.
  • Publication number: 20140370536
    Abstract: The present disclosure relates to optical crosstalk reduction in particle processing (e.g., cytometry including flow cytometry using microfluidic based sorters, drop formation based sorters, and/or cell purification) systems and methods in order to improve performance. More particularly, the present disclosure relates to assemblies, systems and methods for minimizing optical crosstalk during the analyzing, sorting, and/or processing (e.g., purifying, measuring, isolating, detecting, monitoring and/or enriching) of particles (e.g., cells, microscopic particles, etc.). The exemplary systems and methods for crosstalk reduction in particle processing systems (e.g., cell purification systems) may be particularly useful in the area of cellular medicine or the like. The systems and methods may be modular and used singly or in combination to optimize cell purification based on the crosstalk environment and specific requirements of the operator and/or system.
    Type: Application
    Filed: March 13, 2014
    Publication date: December 18, 2014
    Applicant: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Donald Francis Perrault, JR., Emanuel Tito Mendes Machado, Blair D. Morad
  • Publication number: 20140343869
    Abstract: Systems, methods and non-transitory storage medium are disclosed herein for adjusting an output of a particle inspection system representative of a particle characteristic for a particle flowing in a flow-path of a particle processing system. More particularly, the output may be processed and a calibrated output of the particle characteristic generated. In other embodiments, one or more calibration particles are used. Thus, an output of a particle inspection system representative of a particle characteristic for one or more calibration particles flowing in a flow-path of a particle processing system may be compared relative to a standard and an action may be taken based on a result of the comparing the output to the standard.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 20, 2014
    Applicant: CYTONOME/ST, LLC
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Rudolf Hulspas
  • Patent number: 8731860
    Abstract: Systems, methods and non-transitory storage medium are disclosed herein for adjusting an output of a particle inspection system representative of a particle characteristic for a particle flowing in a flow-path of a particle processing system. More particularly, the output may be processed and a calibrated output of the particle characteristic generated. In other embodiments, one or more calibration particles are used. Thus, an output of a particle inspection system representative of a particle characteristic for one or more calibration particles flowing in a flow-path of a particle processing system may be compared relative to a standard and an action may be taken based on a result of the comparing the output to the standard.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: May 20, 2014
    Assignee: Cytonome/ST, LLC
    Inventors: Johnathan Charles, Emanuel Tito Mendes Machado, Rudolf Hulspas
  • Patent number: 8705031
    Abstract: A particle analyzing and/or sorting apparatus and the associated methods. One aspect of the described embodiments relates to an analyzer, or a sorter, having acquisition and sort electronics in the form of a field programmable gate array for processing detected signals. Another aspect relates to a droplet based approach of analyzing and sorting particles and may further include a dynamic element, such a dynamic drop delay. In still another broad aspect, an apparatus and method for dynamically varying other sorting parameters.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 22, 2014
    Assignee: Cytonome/ST, LLC
    Inventors: Nemanya Sedoglavich, Stuart Buddy Ehrlich, Emanuel Tito Mendes Machado, Johnathan Charles Sharpe
  • Publication number: 20120307244
    Abstract: A microfluidic multiple channel particle analysis system (1) which allows particles (2) from a plurality of particle sources (3) to be independently simultaneously entrained in a corresponding plurality of fluid streams (4) for analysis and sorting into particle subpopulations (5) based upon one or more particle characteristics (6).
    Type: Application
    Filed: February 4, 2011
    Publication date: December 6, 2012
    Applicant: Cytonome/ST, LLC
    Inventors: Johnathan Charles Sharpe, Emanuel Tito Mendes Machado, Blair Morad, Rudolf Hulspas, Donald Francis Perrault, JR.
  • Publication number: 20120202237
    Abstract: A particle analyzing and/or sorting apparatus and the associated methods. One aspect of the described embodiments relates to an analyzer, or a sorter, having acquisition and sort electronics in the form of a field programmable gate array for processing detected signals. Another aspect relates to a droplet based approach of analyzing and sorting particles and may further include a dynamic element, such a dynamic drop delay. In still another broad aspect, an apparatus and method for dynamically varying other sorting parameters.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 9, 2012
    Applicant: CYTONOME/ST, LLC
    Inventors: Nemanya Sedoglavich, Stuart Buddy Ehrlich, Emanuel Tito Mendes Machado, Johnathan Charles Sharpe
  • Publication number: 20110196637
    Abstract: Systems, methods and non-transitory storage medium are disclosed herein for adjusting an output of a particle inspection system representative of a particle characteristic for a particle flowing in a flow-path of a particle processing system. More particularly, the output may be processed and a calibrated output of the particle characteristic generated. In other embodiments, one or more calibration particles are used. Thus, an output of a particle inspection system representative of a particle characteristic for one or more calibration particles flowing in a flow-path of a particle processing system may be compared relative to a standard and an action may be taken based on a result of the comparing the output to the standard.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 11, 2011
    Applicant: CYTONOME/ST, LLC
    Inventors: Johnathan C. Sharpe, Emanuel Tito Mendes Machado, Rudolf Hulspas