Patents by Inventor Emil P. Kartalov

Emil P. Kartalov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093273
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventors: Emil P. KARTALOV, Aditya RAJAGOPAL, Axel SCHERER
  • Publication number: 20240018573
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: July 13, 2023
    Publication date: January 18, 2024
    Inventors: Emil P. KARTALOV, Aditya RAJAGOPAL, Axel SCHERER
  • Patent number: 11866768
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: January 9, 2024
    Assignee: California Institute of Technology
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Patent number: 11827921
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: November 28, 2023
    Assignee: California Institute of Technology
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Patent number: 11635064
    Abstract: Artificial muscles comprising a body of dielectric elastomer, wherein the body contains a pair of microfluidic networks are presented. Each microfluidic network includes a plurality of channels fluidically coupled via a manifold. The channels of the microfluidic networks are interdigitated and filled with conductive fluid such that each set of adjacent channels functions as the electrodes of an electroactive polymer (EAP) actuator. By using the manifolds as compliant wiring to energize the electrodes, artificial muscles in accordance with the present disclosure mitigate some or all of the reliability problems associated with prior-art artificial muscles.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: April 25, 2023
    Assignees: California Institute of Technology, The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Emil P. Kartalov, Axel Scherer
  • Publication number: 20230086246
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: August 10, 2022
    Publication date: March 23, 2023
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Publication number: 20230038055
    Abstract: The present invention relates to methods of nucleic acid analyte detection by PCR. In particular, methods and kits for the detection of a plurality of nucleic acid analytes and the generation of kinetic signatures are provided. Further provided are methods and kits of nested PCR and PCR using limiting primers.
    Type: Application
    Filed: October 3, 2022
    Publication date: February 9, 2023
    Inventors: Aditya Rajagopal, Emil P. Kartalov
  • Patent number: 11492664
    Abstract: The present invention relates to methods of nucleic acid analyte detection by PCR. In particular, methods and kits for the detection of a plurality of nucleic acid analytes and the generation of kinetic signatures are provided. Further provided are methods and kits of nested PCR and PCR using limiting primers.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 8, 2022
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Emil P. Kartalov
  • Publication number: 20220289348
    Abstract: Methods and devices including implantable micro-sensors used to detect tissue-dissolved inert gas and to detect microbubble formation to avoid Caisson disease are described. The disclosed methods and devices are based on measuring the refractive index changes in hydrophobic liquids after absorbing an inert gas such as nitrogen. The changes in the refractive index are based on implementing one of an interferometry, optical microcavity resonance shift, a photonic crystal resonance, a beam deflection, a resonance tuning or detuning, an amplitude change, or an intensity change method.
    Type: Application
    Filed: January 24, 2022
    Publication date: September 15, 2022
    Inventors: Emil P. KARTALOV, Axel SCHERER
  • Patent number: 11260943
    Abstract: Methods and devices including implantable micro-sensors used to detect tissue-dissolved inert gas and to detect microbubble formation to avoid Caisson disease are described. The disclosed methods and devices are based on measuring the refractive index changes in hydrophobic liquids after absorbing an inert gas such as nitrogen. The changes in the refractive index are based on implementing one of an interferometry, optical microcavity resonance shift, a photonic crystal resonance, a beam deflection, a resonance tuning or detuning, an amplitude change, or an intensity change method.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: March 1, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Emil P. Kartalov, Axel Scherer
  • Publication number: 20210363581
    Abstract: FRET-based analytes detection and related methods and systems are described where a pair of FRET labeled primers and/or oligonucleotides are used that are specific for target sequences located at a distance up to four time the Förster distance of the FRET chromophores presented on the FRET labeled primers and/or oligonucleotides one with respect to the other in one or more polynucleotide analyte; in particular the pair of FRET labeled primers and/or oligonucleotides is combined with a sample and subjected to one or more polynucleotide amplification reactions before measuring FRET signals from at least one FRET chromophore.
    Type: Application
    Filed: December 17, 2020
    Publication date: November 25, 2021
    Applicant: California Institute of Technology
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer, Mark D. Goldberg
  • Patent number: 11060511
    Abstract: Artificial muscles comprising a body of dielectric elastomer, wherein the body contains a pair of microfluidic networks are presented. Each microfluidic network includes a plurality of channels fluidically coupled via a manifold. The channels of the microfluidic networks are interdigitated and filled with conductive fluid such that each set of adjacent channels functions as the electrodes of an electroactive polymer (EAP) actuator. By using the manifolds as compliant wiring to energize the electrodes, artificial muscles in accordance with the present disclosure mitigate some or all of the reliability problems associated with prior-art artificial muscles.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: July 13, 2021
    Assignees: California Institute of Technology, The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Emil P. Kartalov, Axel Scherer
  • Publication number: 20210098076
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: May 1, 2020
    Publication date: April 1, 2021
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Publication number: 20210012860
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 14, 2021
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Patent number: 10889863
    Abstract: FRET-based analytes detection and related methods and systems are described where a pair of FRET labeled primers and/or oligonucleotides are used that are specific for target sequences located at a distance up to four time the Förster distance of the FRET chromophores presented on the FRET labeled primers and/or oligonucleotides one with respect to the other in one or more polynucleotide analyte; in particular the pair of FRET labeled primers and/or oligonucleotides is combined with a sample and subjected to one or more polynucleotide amplification reactions before measuring FRET signals from at least one FRET chromophore.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: January 12, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer, Mark D. Goldberg
  • Patent number: 10770170
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: September 8, 2020
    Assignee: California Institute of Technology
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer
  • Publication number: 20200216155
    Abstract: Methods to build implantable micro-sensors used to detect tissue-dissolved inert gas and to detect microbubble formation to avoid Caisson disease are described. The disclosed methods and devices are based on measuring physical changes in hydrophobic liquids after absorbing an inert gas such as nitrogen. The teachings of the disclosure help improve safety and efficiency of diving operations.
    Type: Application
    Filed: December 18, 2019
    Publication date: July 9, 2020
    Inventors: Emil P. KARTALOV, Axel SCHERER
  • Patent number: 10457937
    Abstract: Provided herein are devices and methods for the micro-isolation of biological cellular material. A micro-isolation device described can comprise a photomask that protects regions of interest against DNA-destroying illumination. The micro-isolation device can further comprise photosensitive material defining access wells following illumination and subsequent developing of the photosensitive material. The micro-isolation device can further comprise a chambered microfluidic device comprising channels providing access to wells defined in photosensitive material. The micro-isolation device can comprise a chambered microfluidic device without access wells defined in photosensitive material where valves control the flow of gases or liquids through the channels of the microfluidic device.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: October 29, 2019
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, UNIVERSITY OF SOUTHERN CALIFORNIA, CURATE BIOSCIENCES LLC
    Inventors: Emil P. Kartalov, Cheng-Chung Lee, Paul Predki
  • Publication number: 20190127799
    Abstract: FRET-based analytes detection and related methods and systems are described where a pair of FRET labeled primers and/or oligonucleotides are used that are specific for target sequences located at a distance up to four time the Förster distance of the FRET chromophores presented on the FRET labeled primers and/or oligonucleotides one with respect to the other in one or more polynucleotide analyte; in particular the pair of FRET labeled primers and/or oligonucleotides is combined with a sample and subjected to one or more polynucleotide amplification reactions before measuring FRET signals from at least one FRET chromophore.
    Type: Application
    Filed: August 13, 2018
    Publication date: May 2, 2019
    Inventors: Emil P. KARTALOV, Aditya RAJAGOPAL, Axel SCHERER, Mark D. GOLDBERG
  • Publication number: 20190034583
    Abstract: This disclosure provides methods, systems, compositions, and kits for the multiplexed detection of a plurality of analytes in a sample. In some examples, this disclosure provides methods, systems, compositions, and kits wherein multiple analytes may be detected in a single sample volume by acquiring a cumulative measurement or measurements of at least one quantifiable component of a signal. In some cases, additional components of a signal, or additional signals (or components thereof) are also quantified. Each signal or component of a signal may be used to construct a coding scheme which can then be used to determine the presence or absence of any analyte.
    Type: Application
    Filed: March 7, 2018
    Publication date: January 31, 2019
    Inventors: Emil P. Kartalov, Aditya Rajagopal, Axel Scherer