Patents by Inventor Emily R. Kinser

Emily R. Kinser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959874
    Abstract: A nanostructure includes a base layer including a surface. The nanostructure further includes nano-patterned features including non-random topography located on the surface of the base layer. The nanostructure also includes an encapsulating layer including a conductive material arranged on the nano-patterned features.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 16, 2024
    Assignee: International Business Machines Corporation
    Inventors: Cristina Camagong, Hariklia Deligianni, Emily R. Kinser, Roy Yu
  • Publication number: 20230366874
    Abstract: In an approach, using a biomedical device, a processor stimulates a cell sample. A processor senses, based on feedback from at least two chemical sensors of the biomedical device, the presence of at least two types of biomolecules released by the cell sample. A processor records, using a computer chip of the device, data collected by the at least two chemical sensors. A processor sends, using an antenna of the biomedical device, the recorded data to a remote server.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Inventors: Harikilia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin
  • Publication number: 20230285879
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Inventors: Babar Khan, Emily R. Kinser
  • Patent number: 11754550
    Abstract: In an approach, a biomedical device comprises at least one electrode, wherein the at least one electrode is coupled with a computer chip; at least two chemical sensors, wherein the at least two chemical sensors are coupled with the computer chip; the computer chip, wherein the computer chip comprises: a semiconductor substrate, and a processor; a microfluidic structure, wherein the microfluidic structure is an inert elastomeric polymer; a power supply device coupled to the computer chip; and an antenna configured to send data collected onto the computer chip to a remote server. In an approach, a processor stimulating a cell sample. A processor senses the presence of at least two types of biomolecules released by the cell sample. A processor records data collected by the at least two chemical sensors. A processor sends the recorded data to a remote server.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: September 12, 2023
    Assignee: International Business Machines Corporation
    Inventors: Harikilia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin
  • Patent number: 11684878
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: June 27, 2023
    Assignee: International Business Machines Corporation
    Inventors: Babar Khan, Emily R. Kinser
  • Patent number: 11562907
    Abstract: A method for forming a nanostructure includes coating an exposed surface of a base layer with a patterning layer. The method further includes forming a pattern in the patterning layer including nano-patterned non-random openings, such that a bottom portion of the non-random openings provides direct access to the exposed surface of the base layer. The method also includes depositing a material in the non-random openings in the patterning layer, such that the material contacts the exposed surface to produce repeating individually articulated nano-scale features. The method includes removing remaining portions of the patterning layer. The method further includes forming an encapsulation layer on exposed surfaces of the repeating individually articulated nanoscale features and the exposed surface of the base layer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: January 24, 2023
    Assignee: International Business Machines Corporation
    Inventors: Cristina Camagong, Hariklia Deligianni, Damon B. Farmer, Andrei Fustochenko, Ying He, Emily R. Kinser, Yu Luo, Roy R. Yu
  • Patent number: 11439338
    Abstract: A three-dimensional (3D) comb probe structure includes a carrier, a plurality of combs arranged in the carrier and spaced apart from one another, a plurality of shanks forming the combs, each shank including a base portion and a stem portion extending from the base portion, wherein sets of the shanks are joined together by the base portions thereof to form a respective comb, and a plurality of sensing elements disposed along the stem portion of each of the shanks and electrically connected to electrical contacts disposed at respective ones of the base portions. The sensing elements can include nanopatterned features on surfaces thereof forming a non-random topography.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: September 13, 2022
    Assignee: International Business Machines Corporation
    Inventors: Roy R. Yu, Emily R. Kinser, Hariklia Deligianni
  • Patent number: 11370004
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: June 28, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Patent number: 11311233
    Abstract: A sensing and treatment device includes an array of metal nanorod electrodes formed on a substrate, the array including first electrodes for sensing, and second electrodes for electrical pulsation. A data processing system is configured to monitor a parameter using the first electrodes and to activate the electrical pulsation in the second electrodes in accordance with a reading of the parameter.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: April 26, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Roy R. Yu
  • Patent number: 11311234
    Abstract: A sensing and treatment device includes an array of metal nanorod electrodes formed on a substrate, the array including first electrodes for sensing, and second electrodes for electrical pulsation. A data processing system is configured to monitor a parameter using the first electrodes and to activate the electrical pulsation in the second electrodes in accordance with a reading of the parameter.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: April 26, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Bruce B. Doris, Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Roy R. Yu
  • Patent number: 11200378
    Abstract: Embodiments for processing language by one or more processors are described. A plurality of document portions are detected. Each of the plurality of document portions includes text in a respective language type. The text of each of the plurality of document portions is converted to a standardized language type. A language processing method is caused to be performed on the plurality of document portions after the converting of the text of each of the plurality of document portions to the standardized language type.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: December 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Fleischman, Emily R. Kinser, John E. Drummond, Wayne M. Delia, Sue Hallen
  • Patent number: 11169399
    Abstract: Lenses and methods for adjusting the focus of a lens include dividing multiple light sensors in a lens into four quadrants. A position of the lens relative to occlusion along a top and bottom edge of the lens is determined based on numbers of bits in respective bit sequences from light sensors in respective regions of the lens. An optimal focal length for the lens is determined based on the position of the lens. The focal length of the lens is adjusted to match the optimal focal length.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: November 9, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emily R. Kinser, John U. Knickerbocker, Roy R. Yu
  • Patent number: 11161066
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: November 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Babar Khan, Emily R. Kinser
  • Patent number: 11116877
    Abstract: Aspects include methods of fabricating antibacterial surfaces for medical implant devices including patterning a photoresist layer on a silicon substrate and etching the silicon to generate a plurality of nanopillars. Aspects also include removing the photoresist layer from the structure and coating the plurality of nanopillars with a biocompatible film. Aspects also include a system for preventing bacterial infection associated with medical implants including a thin silicon film including a plurality of nanopillars.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: September 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stacey M. Gifford, Huan Hu, Emily R. Kinser, Roy R. Yu, Sufi Zafar
  • Patent number: 11077475
    Abstract: A biosensor includes an array of metal nanorods formed on a substrate. An electropolymerized conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open and close responsively to electrical signals applied to the nanorods. A dispensing material is loaded in the reservoir to be dispersed in accordance with open pores.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: August 3, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Emily R. Kinser, Qinghuang Lin, Nathan P. Marchack, Roy R. Yu
  • Patent number: 11045141
    Abstract: A biosensor calibration structure is provided that includes at least two electrode structures in which at least one of the electrode structures has a non-random nanopattern on the sensing surface which provides a different sensing surface area than at least one other electrode structure. The at least one other electrode structure may be non-patterned (i.e., flat) or have another non-random nanopattern on the sensing surface. A biological functionalization material such as, for example, glucose oxidase or glucose dehydrogenase, can be located on at least the sensing surface of each electrode structure. The biosensor calibration structure can be used within a biosensor calibration method.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: June 29, 2021
    Assignee: International Business Machines Corporation
    Inventor: Emily R. Kinser
  • Patent number: 11022577
    Abstract: Methods for forming an electrode structure, which can be used as a biosensor, are provided in which the electrode structure has non-random topography located on one surface of an electrode base. In some embodiments, an electrode structure is obtained that contains no interface between the non-random topography of the electrode structure and the electrode base of the electrode structure. In other embodiments, electrode structures are obtained that have an interface between the non-random topography of the electrode structure and the electrode base of the electrode structure.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: June 1, 2021
    Assignee: International Business Machines Corporation
    Inventor: Emily R. Kinser
  • Patent number: 11013908
    Abstract: A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: May 25, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Qinghuang Lin, Emily R. Kinser, Nathan P. Marchack, Roy R. Yu
  • Patent number: 11013437
    Abstract: An electrode structure, which can be used as a biosensor, is provided that has non-random topography located on one surface of an electrode base substrate. The non-random topography of the electrode structure and the electrode base substrate of the electrode structure are of unitary construction and unitary composition and thus there is no interface is located between these elements of the electrode structure.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: May 25, 2021
    Assignees: International Business Machines Corporation, YALE UNIVERSITY
    Inventors: Emily R. Kinser, Themistoclis Kyriakides, Jagannath Padmanabhan
  • Publication number: 20210106933
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Babar Khan, Emily R. Kinser