Patents by Inventor Emily Won

Emily Won has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220096143
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes a distal electrical insulator, a proximal electrical insulator, a distal electrical conductor defining a distal electrode with a closed distal end and a proximal electrical conductor defining a proximal electrode, the distal electrode longitudinally spaced apart and electrically isolated from the proximal electrode by the distal electrical insulator. The distal electrode has a closed proximal end formed by a distal face of the distal electrical insulator to thereby define a closed distal inner lumen for circulating the cooling fluid. The proximal electrode has a closed distal end formed by a proximal face of the distal electrical insulator and a closed proximal end formed by a distal face of the proximal electrical insulator to thereby define a closed proximal inner lumen for circulating the cooling fluid.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 31, 2022
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Patent number: 11224475
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes a distal electrical insulator, a proximal electrical insulator, a distal electrical conductor defining a distal electrode with a closed distal end and a proximal electrical conductor defining a proximal electrode, the distal electrode longitudinally spaced apart and electrically isolated from the proximal electrode by the distal electrical insulator. The distal electrode has a closed proximal end formed by a distal face of the distal electrical insulator to thereby define a closed distal inner lumen for circulating the cooling fluid. The proximal electrode has a closed distal end formed by a proximal face of the distal electrical insulator and a closed proximal end formed by a distal face of the proximal electrical insulator to thereby define a closed proximal inner lumen for circulating the cooling fluid.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: January 18, 2022
    Assignee: MEDTRONIC HOLDING COMPANY SÀRL
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Publication number: 20200046417
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes a distal electrical insulator, a proximal electrical insulator, a distal electrical conductor defining a distal electrode with a closed distal end and a proximal electrical conductor defining a proximal electrode, the distal electrode longitudinally spaced apart and electrically isolated from the proximal electrode by the distal electrical insulator. The distal electrode has a closed proximal end formed by a distal face of the distal electrical insulator to thereby define a closed distal inner lumen for circulating the cooling fluid. The proximal electrode has a closed distal end formed by a proximal face of the distal electrical insulator and a closed proximal end formed by a distal face of the proximal electrical insulator to thereby define a closed proximal inner lumen for circulating the cooling fluid.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Patent number: 10448990
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes a distal electrical insulator, a proximal electrical insulator, a distal electrical conductor defining a distal electrode with a closed distal end and a proximal electrical conductor defining a proximal electrode, the distal electrode longitudinally spaced apart and electrically isolated from the proximal electrode by the distal electrical insulator. The distal electrode has a closed proximal end formed by a distal face of the distal electrical insulator to thereby define a closed distal inner lumen for circulating the cooling fluid. The proximal electrode has a closed distal end formed by a proximal face of the distal electrical insulator and a closed proximal end formed by a distal face of the proximal electrical insulator to thereby define a closed proximal inner lumen for circulating the cooling fluid.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: October 22, 2019
    Assignee: MEDTRONIC HOLDING COMPANY SÀRL
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Patent number: 10105175
    Abstract: An electrosurgical bipolar probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The bipolar probe includes tubular electrodes configured such that the inner surface of the electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. An exemplary disclosed method of using a bipolar probe having an active tip having at least two electrodes for delivering energy includes the steps of: advancing the active tip into a bone tissue; delivering energy substantially between the electrodes in a bipolar manner; and supplying cooling fluid to the active tip for internal cooling of the electrodes. Some versions of the method further include the steps of monitoring the temperature of tissue to which the energy is being delivered; and controlling the delivery of energy in suspense to the temperature of the tissue.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: October 23, 2018
    Assignee: Medtronic Holding Company Sárl
    Inventors: Neil Godara, Jason Woo, Emily Won, Michael Gofeld
  • Publication number: 20180042665
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes a distal electrical insulator, a proximal electrical insulator, a distal electrical conductor defining a distal electrode with a closed distal end and a proximal electrical conductor defining a proximal electrode, the distal electrode longitudinally spaced apart and electrically isolated from the proximal electrode by the distal electrical insulator. The distal electrode has a closed proximal end formed by a distal face of the distal electrical insulator to thereby define a closed distal inner lumen for circulating the cooling fluid. The proximal electrode has a closed distal end formed by a proximal face of the distal electrical insulator and a closed proximal end formed by a distal face of the proximal electrical insulator to thereby define a closed proximal inner lumen for circulating the cooling fluid.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 15, 2018
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Patent number: 9788889
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes a distal electrical insulator, a proximal electrical insulator, a distal electrical conductor defining a distal electrode with a closed distal end and a proximal electrical conductor defining a proximal electrode, the distal electrode longitudinally spaced apart and electrically isolated from the proximal electrode by the distal electrical insulator. The distal electrode has a closed proximal end formed by a distal face of the distal electrical insulator to thereby define a closed distal inner lumen for circulating the cooling fluid. The proximal electrode has a closed distal end formed by a proximal face of the distal electrical insulator and a closed proximal end formed by a distal face of the proximal electrical insulator to thereby define a closed proximal inner lumen for circulating the cooling fluid.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 17, 2017
    Assignee: Kyphon SÀRL
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Publication number: 20170245920
    Abstract: An electrosurgical bipolar probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The bipolar probe includes tubular electrodes configured such that the inner surface of the electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. An exemplary disclosed method of using a bipolar probe having an active tip having at least two electrodes for delivering energy includes the steps of: advancing the active tip into a bone tissue; delivering energy substantially between the electrodes in a bipolar manner; and supplying cooling fluid to the active tip for internal cooling of the electrodes. Some versions of the method further include the steps of monitoring the temperature of tissue to which the energy is being delivered; and controlling the delivery of energy in suspense to the temperature of the tissue.
    Type: Application
    Filed: May 16, 2017
    Publication date: August 31, 2017
    Inventors: Neil Godara, Jason Woo, Emily Won, Michael Gofeld
  • Patent number: 9675408
    Abstract: An electrosurgical bipolar probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The bipolar probe includes tubular electrodes configured such that the inner surface of the electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. An exemplary disclosed method of using a bipolar probe having an active tip having at least two electrodes for delivering energy includes the steps of: advancing the active tip into a bone tissue; delivering energy substantially between the electrodes in a bipolar manner; and supplying cooling fluid to the active tip for internal cooling of the electrodes. Some versions of the method further include the steps of monitoring the temperature of tissue to which the energy is being delivered; and controlling the delivery of energy in suspense to the temperature of the tissue.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: June 13, 2017
    Assignee: Kyphon SÀRL
    Inventors: Neil Godara, Jason Woo, Emily Won, Michael Gofeld
  • Publication number: 20160113704
    Abstract: An electrosurgical bipolar probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The bipolar probe includes tubular electrodes configured such that the inner surface of the electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. An exemplary disclosed method of using a bipolar probe having an active tip having at least two electrodes for delivering energy includes the steps of: advancing the active tip into a bone tissue; delivering energy substantially between the electrodes in a bipolar manner; and supplying cooling fluid to the active tip for internal cooling of the electrodes. Some versions of the method further include the steps of monitoring the temperature of tissue to which the energy is being delivered; and controlling the delivery of energy in suspense to the temperature of the tissue.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Inventors: Neil Godara, Jason Woo, Emily Won, Michael Gofeld
  • Publication number: 20160045256
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes a distal electrical insulator, a proximal electrical insulator, a distal electrical conductor defining a distal electrode with a closed distal end and a proximal electrical conductor defining a proximal electrode, the distal electrode longitudinally spaced apart and electrically isolated from the proximal electrode by the distal electrical insulator. The distal electrode has a closed proximal end formed by a distal face of the distal electrical insulator to thereby define a closed distal inner lumen for circulating the cooling fluid. The proximal electrode has a closed distal end formed by a proximal face of the distal electrical insulator and a closed proximal end formed by a distal face of the proximal electrical insulator to thereby define a closed proximal inner lumen for circulating the cooling fluid.
    Type: Application
    Filed: October 30, 2015
    Publication date: February 18, 2016
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Patent number: 9241760
    Abstract: An electrosurgical bipolar probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The bipolar probe includes tubular electrodes configured such that the inner surface of the electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. An exemplary disclosed method of using a bipolar probe having an active tip having at least two electrodes for delivering energy includes the steps of: advancing the active tip into a bone tissue; delivering energy substantially between the electrodes in a bipolar manner; and supplying cooling fluid to the active tip for internal cooling of the electrodes. Some versions of the method further include the steps of monitoring the temperature of tissue to which the energy is being delivered; and controlling the delivery of energy in response to the temperature of the tissue.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: January 26, 2016
    Assignee: 9234438 Canada Inc
    Inventors: Neil Godara, Jason Woo, Emily Won, Michael Gofeld
  • Patent number: 9173700
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes tubular electrodes configured such that the inner surface of the lesioning electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. One embodiment includes an electrosurgical probe having at least two electrically isolated electrical conductors, including an inner electrical conductor and an outer electrical conductor. The inner electrical conductor defines a lumen for the circulation of a cooling fluid therein. An inner electrical insulator is disposed between the electrical conductors to electrically isolate the electrical conductors. The electrical insulator has sufficient thermal conductivity to allow for cooling of the inner and outer electrical conductors when the cooling fluid is circulating within the lumen of the inner electrical conductor.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: November 3, 2015
    Assignee: 9234438 CANADA INC.
    Inventors: Neil Godara, Jason Woo, Emily Won
  • Publication number: 20130041369
    Abstract: An electrosurgical probe with internal cooling for use in systems and methods for lesioning in bone and other tissue is disclosed. The probe includes tubular electrodes configured such that the inner surface of the lesioning electrodes are cooled, directly or indirectly, while keeping the electrodes electrically isolated. One embodiment includes an electrosurgical probe having at least two electrically isolated electrical conductors, including an inner electrical conductor and an outer electrical conductor. The inner electrical conductor defines a lumen for the circulation of a cooling fluid therein. An inner electrical insulator is disposed between the electrical conductors to electrically isolate the electrical conductors. The electrical insulator has sufficient thermal conductivity to allow for cooling of the inner and outer electrical conductors when the cooling fluid is circulating within the lumen of the inner electrical conductor.
    Type: Application
    Filed: April 15, 2011
    Publication date: February 14, 2013
    Applicant: BAYLIS MEDICAL COMPANY
    Inventors: Neil Godara, Jason Woo, Emily Won