Patents by Inventor Emre Gunduzhan

Emre Gunduzhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150188825
    Abstract: Routers in a communications network mark packets of a multi-priority stream to establish a drop precedence of the packets during network congestion. For each packet received, a router employs one of two types of packet-marking mechanisms to associate low drop precedence with a high-priority, out-of-profile packet. One type, called “token bucket with loan bucket,” uses a token bucket to determine whether a packet is in conformance, i.e., in-profile, with a traffic profile and at least one loan bucket to determine whether a high priority, out-of-profile packet may borrow bandwidth. Another mechanism type, called “token bucket with color-exchange queue,” uses a color-exchange queue to delay packet forwarding for a fixed period. During this delay, a high-drop-precedence marking of an out-of-profile, high-priority packet may be exchanged with a low-drop-precedence marking of an in-profile, low-priority packet. The packet-marking mechanisms are useful in improving the quality of video viewing.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 2, 2015
    Inventor: Emre Gunduzhan
  • Patent number: 8982704
    Abstract: Routers in a communications network mark packets of a multi-priority stream to establish a drop precedence of the packets during network congestion. For each packet received, a router employs one of two types of packet-marking mechanisms to associate low drop precedence with a high-priority, out-of-profile packet. One type, called “token bucket with loan bucket,” uses a token bucket to determine whether a packet is in conformance, i.e., in-profile, with a traffic profile and at least one loan bucket to determine whether a high priority, out-of-profile packet may borrow bandwidth. Another mechanism type, called “token bucket with color-exchange queue,” uses a color-exchange queue to delay packet forwarding for a fixed period. During this delay, a high-drop-precedence marking of an out-of-profile, high-priority packet may be exchanged with a low-drop-precedence marking of an in-profile, low-priority packet. The packet-marking mechanisms are useful in improving the quality of video viewing.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: March 17, 2015
    Assignee: Rockstar Consortium US LP
    Inventor: Emre Gunduzhan
  • Patent number: 8913500
    Abstract: Routers in a communications network mark packets of a multi-priority stream to establish a drop precedence of the packets during network congestion. For each packet received, a router employs one of two types of packet-marking mechanisms to associate low drop precedence with a high-priority, out-of-profile packet. One type, called “token bucket with loan bucket,” uses a token bucket to determine whether a packet is in conformance, i.e., in-profile, with a traffic profile and at least one loan bucket to determine whether a high priority, out-of-profile packet may borrow bandwidth. Another mechanism type, called “token bucket with color-exchange queue,” uses a color-exchange queue to delay packet forwarding for a fixed period. During this delay, a high-drop-precedence marking of an out-of-profile, high-priority packet may be exchanged with a low-drop-precedence marking of an in-profile, low-priority packet. The packet-marking mechanisms are useful in improving the quality of video viewing.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: December 16, 2014
    Assignee: Rockstar Consortium US LP
    Inventor: Emre Gunduzhan
  • Publication number: 20140286169
    Abstract: Routers in a communications network mark packets of a multi-priority stream to establish a drop precedence of the packets during network congestion. For each packet received, a router employs one of two types of packet-marking mechanisms to associate low drop precedence with a high-priority, out-of-profile packet. One type, called “token bucket with loan bucket,” uses a token bucket to determine whether a packet is in conformance, i.e., in-profile, with a traffic profile and at least one loan bucket to determine whether a high priority, out-of-profile packet may borrow bandwidth. Another mechanism type, called “token bucket with color-exchange queue,” uses a color-exchange queue to delay packet forwarding for a fixed period. During this delay, a high-drop-precedence marking of an out-of-profile, high-priority packet may be exchanged with a low-drop-precedence marking of an in-profile, low-priority packet. The packet-marking mechanisms are useful in improving the quality of video viewing.
    Type: Application
    Filed: June 10, 2014
    Publication date: September 25, 2014
    Inventor: Emre Gunduzhan
  • Patent number: 8498209
    Abstract: Routers in a communications network mark packets of a multi-priority stream to establish a drop precedence of the packets during network congestion. For each packet received, a router employs one of two types of packet-marking mechanisms to associate low drop precedence with a high-priority, out-of-profile packet. One type, called “token bucket with loan bucket,” uses a token bucket to determine whether a packet is in conformance, i.e., in-profile, with a traffic profile and at least one loan bucket to determine whether a high priority, out-of-profile packet may borrow bandwidth. Another mechanism type, called “token bucket with color-exchange queue,” uses a color-exchange queue to delay packet forwarding for a fixed period. During this delay, a high-drop-precedence marking of an out-of-profile, high-priority packet may be exchanged with a low-drop-precedence marking of an in-profile, low-priority packet. The packet-marking mechanisms are useful in improving the quality of video viewing.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: July 30, 2013
    Assignee: Rockstar Consortium US LP
    Inventor: Emre Gunduzhan
  • Patent number: 8179800
    Abstract: Routers in a communications network mark packets of a multi-priority stream to establish a drop precedence of the packets during network congestion. For each packet received, a router employs one of two types of packet-marking mechanisms to associate low drop precedence with a high-priority, out-of-profile packet. One type, called “token bucket with loan bucket,” uses a token bucket to determine whether a packet is in conformance, i.e., in-profile, with a traffic profile and at least one loan bucket to determine whether a high priority, out-of-profile packet may borrow bandwidth. Another mechanism type, called “token bucket with color-exchange queue,” uses a color-exchange queue to delay packet forwarding for a fixed period. During this delay, a high-drop-precedence marking of an out-of-profile, high-priority packet may be exchanged with a low-drop-precedence marking of an in-profile, low-priority packet. The packet-marking mechanisms are useful in improving the quality of video viewing.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 15, 2012
    Assignee: Rockstar Bidco, LP
    Inventor: Emre Gunduzhan
  • Patent number: 7941531
    Abstract: A method resolves collisions in a networking system that includes a plurality of entities operable to transmit an intention to reserve a resource. A first request to reserve resources, which includes a listing of the resources along the first transmission path and a first intention priority value, is broadcast through the networking system. The first intention priority value is determined as a function of other intention priority values previously broadcast through the networking system. A second request is received. The second request includes a second intention priority value and at least one of the same resources included in the first request, thereby indicating a collision. The collision is resolved by comparing the first intention priority value to the second intention priority value. If the collision is resolved in favor of the first request, data is routed through the networking system using the resources along the first transmission path.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: May 10, 2011
    Assignee: Nortel Networks Limited
    Inventors: Emre Gunduzhan, Peter Ashwood-Smith
  • Publication number: 20100131635
    Abstract: A method resolves collisions in a networking system that includes a plurality of entities operable to transmit an intention to reserve a resource. A first request to reserve resources, which includes a listing of the resources along the first transmission path and a first intention priority value, is broadcast through the networking system. The first intention priority value is determined as a function of other intention priority values previously broadcast through the networking system. A second request is received. The second request includes a second intention priority value and at least one of the same resources included in the first request, thereby indicating a collision. The collision is resolved by comparing the first intention priority value to the second intention priority value. If the collision is resolved in favor of the first request, data is routed through the networking system using the resources along the first transmission path.
    Type: Application
    Filed: November 24, 2008
    Publication date: May 27, 2010
    Applicant: NORTEL NETWORKS LIMITED
    Inventors: Emre GUNDUZHAN, Peter ASHWOOD-SMITH
  • Publication number: 20100023842
    Abstract: A method for providing error correction of media packets. Service nodes associated with a core network segment use a first error correction process, and service nodes associated with an access network segment use a second error correction process. Service nodes associated with a local network segment may use a third error correction process. The present invention utilizes different error correction processes on different network segments as appropriate. Service nodes may receive indicators from monitoring agents that error correction is insufficient and, in response, a service node may increase an amount of error correction associated with a network segment. Media packets may be interleaved in a forward error correction (FEC) block in a manner that increases an amount of packet recovery.
    Type: Application
    Filed: December 23, 2008
    Publication date: January 28, 2010
    Applicant: NORTEL NETWORKS LIMITED
    Inventors: Timothy J. Rahrer, Emre Gunduzhan, Martin Jan Soukup
  • Patent number: 7586848
    Abstract: Routers in a communications network mark packets of a multi-priority stream to establish a drop precedence of the packets during network congestion. For each packet received, a router employs one of two types of packet-marking mechanisms to associate low drop precedence with a high-priority, out-of-profile packet. One type, called “token bucket with loan bucket,” uses a token bucket to determine whether a packet is in conformance, i.e., in-profile, with a traffic profile and at least one loan bucket to determine whether a high priority, out-of-profile packet may borrow bandwidth. Another mechanism type, called “token bucket with color-exchange queue,” uses a color-exchange queue to delay packet forwarding for a fixed period. During this delay, a high-drop-precedence marking of an out-of-profile, high-priority packet may be exchanged with a low-drop-precedence marking of an in-profile, low-priority packet. The packet-marking mechanisms are useful in improving the quality of video viewing.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: September 8, 2009
    Assignee: Nortel Networks Limited
    Inventor: Emre Gunduzhan
  • Patent number: 6889183
    Abstract: A method and apparatus for generating a new audio segment that is based upon a given audio segment of an audio signal first locates a set of consecutive audio segments in the audio signal. The located set of audio segments precede the given audio signal and have a formant. The formant then is removed from the set of audio signals to produce a set of residue segments having a pitch. The pitch and set of residue segments then are processed to produce a new set of residue segments. Once produced, the formant of the consecutive audio segments is added to the new set of residue segments to produce the new audio segment. The audio signal includes a plurality of audio segments.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: May 3, 2005
    Assignee: Nortel Networks Limited
    Inventor: Emre Gunduzhan