Patents by Inventor Enhou Han

Enhou Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140373982
    Abstract: The present invention discloses a magnesium alloy sheet with low Gd content and high ductility and its hot rolling technology, which belongs to the field of metal material technology. The chemical components of the magnesium alloy sheet, based on the mass percent, take up respectively: 0.9˜2.1% as Zn, 0.2˜0.8% as rare earth element, namely Gd, 0˜0.9% as Mn, and the rest as Mg. The magnesium alloy sheet of the present invention is added with relatively lower rare earth element, Gd, which reduces the alloy costs; in addition, magnesium alloy has good rolling performance, which can realize continuous, multi-pass and large-deformation rolling, and also ensure the sheets rolled have non-basal texture and high room-temperature elongation which reaches 35˜50%, wherein the elongation, ?, in the rolling direction is no less than 35% and that in the horizontal direction no less than 45%.
    Type: Application
    Filed: August 2, 2013
    Publication date: December 25, 2014
    Applicant: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Rongshi Chen, Hong Yan, Enhou Han, Wei Ke
  • Patent number: 8696831
    Abstract: Disclosed herein is a chromate-free conversion film solution and a method of applying the solution to magnesium and magnesium alloys. The solution contains zirconium ions, manganese ions, barium ions and phosphate corrosion inhibitor; and the pH of the said solution is in the range of 1-5; and may further comprise molybdate as accelerant. The method comprises degreasing, acid etching, surface activation, surface adjusting, and film forming steps. The conversion film obtained in accordance with the disclosed method is uniform, smooth, and compact and has high corrosion resistance and good adhesion with paint film. Moreover, the chromate-free conversion film solution is environmentally friendly and possesses fast film growth rates.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 15, 2014
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Dayong Shan, Yingwei Song, Enhou Han, Rongshi Chen, Wei Ke
  • Publication number: 20120288398
    Abstract: The present invention relates to a cold-rolling method for cold-rolling a wrought Mg alloy with a weak or non-basal texture as well as a cold-rolled sheet, the method comprising the steps of: pre-treating a billet of the wrought Mg alloy with a weak or non-basal texture, and then cold rolling it; wherein the weak or non-basal texture plane of said billet is selected as a rolling plane, and the rolling direction is parallel to the rolling plane; and said billet is cold rolled at room temperature to a sheet or foil with a thickness of 0.1 to 100 mm, wherein single-pass or multi-pass rolling is used, and the cold rolling is followed by an annealing at 200 to 400° C. for 10 min to 48 h.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 15, 2012
    Applicant: Institute of Metal Research, Chinese Academy of Sciences
    Inventors: Rongshi Chen, Di Wu, Enhou Han, Wei Ke
  • Publication number: 20110226388
    Abstract: Disclosed herein is a chromate-free conversion film solution and a method of applying the solution to magnesium and magnesium alloys. The solution contains zirconium ions, manganese ions, barium ions and phosphate corrosion inhibitor; and the pH of the said solution is in the range of 1-5; and may further comprise molybdate as accelerant. The method comprises degreasing, acid etching, surface activation, surface adjusting, and film forming steps. The conversion film obtained in accordance with the disclosed method is uniform, smooth, and compact and has high corrosion resistance and good adhesion with paint film. Moreover, the chromate-free conversion film solution is environmentally friendly and possesses fast film growth rates.
    Type: Application
    Filed: July 8, 2010
    Publication date: September 22, 2011
    Inventors: Dayong SHAN, Yingwei Song, Enhou Han, Rongshi Chen, Wei Ke
  • Patent number: 7845203
    Abstract: The invention relates to a new preparation technique of composites, in details, i.e. a method of producing laminated composite materials of different alloys. In the preparation method, the bi-layer or multi-layer composites are prepared by means of the equal channel angular extrusion/pressure (ECAE/ECAP). Firstly, the appropriate alloys pairs or groups are selected, and the rational arrangements are carried out after pre-treating surfaces; then, the clad process is performed by extrusion and shear deformation in ECAE die; finally, the composite material is produced after one single pass or multiple passes clad extrusion. The annealing treatment can be performed subsequently to enhance the interfacial bonding strength by diffusion after the clad extrusion, and the heat treatment parameters consist of annealing temperature and holding time, which are chosen carefully to meet the demands of the refining microstructures and good properties for both the interfaces and individual component metals.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: December 7, 2010
    Assignee: Institute of Metal Research Chineses Academy of Sciences
    Inventors: Enhou Han, Xibo Liu, Rongshi Chen
  • Publication number: 20090068053
    Abstract: The present invention relates to a high strength and high ductility magnesium alloy and its preparation method. The magnesium alloy in the present invention contains 3˜9 wt % of aluminum, 3.5˜9 wt % of zinc, 0.15˜1 wt % of manganese, 0.01˜2 wt % of antimony, and balanced magnesium. The alloy may further comprise 0˜2 wt. % of one element selected from the group consisting of mischmetal, calcium, and silicon. The room temperature mechanical properties of the T6 heat-treated typical alloy in the present invention are as following: Ultimate Tensile Strength of more than or equal to 270 Mpa, Yield Tensile Strength of more than or equal to 140 Mpa, Elongation of more than or equal to 6%, Brinell hardness of more than or equal to 70, Impact Energy of more than or equal to 12 J. Some of the alloys in the present invention not only possess superior room temperature mechanical properties, but also have very good high temperature mechanical properties.
    Type: Application
    Filed: April 11, 2005
    Publication date: March 12, 2009
    Inventors: Yuequn Ma, Rongshi Chen, Enhou Han
  • Publication number: 20080276681
    Abstract: The invention relates to a new preparation technique of composites, in details, i.e. a method of producing laminated composite materials of different alloys. In the preparation method, the bi-layer or multi-layer composites are prepared by means of the equal channel angular extrusion/pressure (ECAE/ECAP). Firstly, the appropriate alloys pairs or groups are selected, and the rational arrangements are carried out after pre-treating surfaces; then, the clad process is performed by extrusion and shear deformation in ECAE die; finally, the composite material is produced after one single pass or multiple passes clad extrusion. The annealing treatment can be performed subsequently to enhance the interfacial bonding strength by diffusion after the clad extrusion, and the heat treatment parameters consist of annealing temperature and holding time, which are chosen carefully to meet the demands of the refining microstructures and good properties for both the interfaces and individual component metals.
    Type: Application
    Filed: September 24, 2007
    Publication date: November 13, 2008
    Inventors: Enhou Han, Xibo Liu, Rongshi Chen