Patents by Inventor Enrique J. Garcia

Enrique J. Garcia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11787691
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: October 17, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander H. Slocum
  • Patent number: 11458718
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: October 4, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Anastasios John Hart, Enrique J. Garcia, Alexander H. Slocum
  • Publication number: 20210300009
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Application
    Filed: February 1, 2021
    Publication date: September 30, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Anastasios John Hart, Enrique J. Garcia, Alexander H. Slocum
  • Patent number: 10906285
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: February 2, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Anastasios John Hart, Enrique J. Garcia, Alexander H. Slocum
  • Publication number: 20200061985
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Application
    Filed: July 3, 2019
    Publication date: February 27, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Anastasios John Hart, Enrique J. Garcia, Alexander H. Slocum
  • Publication number: 20190336948
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Application
    Filed: March 5, 2019
    Publication date: November 7, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander H. Slocum
  • Patent number: 10399316
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: September 3, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Anastasios John Hart, Enrique J. Garcia, Alexander H. Slocum
  • Patent number: 10265683
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 23, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander H. Slocum
  • Publication number: 20180086641
    Abstract: Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 29, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Enrique J. Garcia, Anastasios John Hart, Diego S. Saito, Brian L. Wardle, Hulya Cebeci
  • Patent number: 9771264
    Abstract: Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: September 26, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Enrique J. Garcia, Anastasios John Hart, Diego S. Saito, Brian L. Wardle, Hulya Cebeci
  • Publication number: 20170057823
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Application
    Filed: June 14, 2016
    Publication date: March 2, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander H. Slocum
  • Patent number: 9394175
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: July 19, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander H. Slocum
  • Publication number: 20160083256
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 24, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander H. Slocum
  • Patent number: 9181639
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes. For example, in certain embodiments, a system for growing nanostructures is provided which includes a growth substrate, a region able to expose the surface of the growth substrate to a set of conditions selected to cause catalytic formation of nanostructures on the surface of the growth substrate, and a region able to expose the surface of the growth substrate to a set of conditions selected to remove nanostructures from the surface of the growth substrate.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: November 10, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander Henry Slocum
  • Patent number: 8337979
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: December 25, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Brian L. Wardle, Anastasios John Hart, Enrique J. Garcia, Alexander Henry Slocum
  • Patent number: 8061767
    Abstract: There is disclosed a seating system which may included a left seat and a right seat independently supported by left and right suspensions systems, respectively. The left and right suspension systems may provide independent vertical, lateral, azimuthal, and longitudinal roll motion of the left and right seats.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: November 22, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Patrik A. Kunzler, Enrique J. Garcia, William J. Mitchell
  • Publication number: 20100196695
    Abstract: Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures.
    Type: Application
    Filed: November 13, 2009
    Publication date: August 5, 2010
    Applicant: Massachusetts Institute of Technology
    Inventors: Enrique J. Garcia, Anastasios John Hart, Diego S. Saito, Brian L. Wardle, Hulya Cebeci
  • Publication number: 20090311166
    Abstract: The present invention provides methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned. The nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
    Type: Application
    Filed: May 18, 2007
    Publication date: December 17, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Anastasios John Hart, Brian L. Wardle, Enrique J. Garcia, Alexander Henry Slocum
  • Publication number: 20090079243
    Abstract: There is disclosed a seating system which may included a left seat and a right seat independently supported by left and right suspensions systems, respectively. The left and right suspension systems may provide independent vertical, lateral, azimuthal, and longitudinal roll motion of the left and right seats.
    Type: Application
    Filed: September 24, 2007
    Publication date: March 26, 2009
    Inventors: Patrik A. Kunzler, Enrique J. Garcia, William J. Mitchell