Patents by Inventor Er-Xuan Ping

Er-Xuan Ping has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140017403
    Abstract: Described are methods of depositing an oxygen deficient metal film by chemical reaction of at least one precursor having a predetermined oxygen deficiency on a substrate. An exemplary method includes, during a metal oxide deposition cycle, exposing the substrate to a metal reactant gas comprising a metal and an oxygen reactant gas comprising oxygen to form a layer containing a metal oxide on the substrate. During an oxygen deficient deposition cycle, exposing the substrate to a metal reactant gas comprising a metal and an additional reactant gas excluding oxygen to form a second layer at least one of a metal nitride and a mixed metal on the substrate during a second cycle, the second layer being oxygen deficient relative to the layer containing the metal oxide; and repeating the metal oxide deposition cycle and the oxygen deficient deposition cycle to form the oxygen deficient film having the predetermined oxygen deficiency.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 16, 2014
    Inventors: Schubert Chu, Er-Xuan Ping, Yoshihde Senzaki
  • Publication number: 20140004689
    Abstract: Provided are methods of doping substrates and making doped semiconductor features. An exemplary method includes providing a substrate having at least one feature having an aspect ratio; depositing a layer of dopants onto the substrate, the layer of dopants having a shape conforming to the at least one feature. A dielectric layer is deposited onto the layer of dopants, the dielectric layer having a shape conforming to the layer of dopants. The dielectric layer is annealed to diffuse the dopants into the substrate.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 2, 2014
    Inventors: Aneesh Nainani, Mathew Abraham, Er-Xuan Ping
  • Publication number: 20130320542
    Abstract: A method of fabricating a self-aligned buried bit line in a structure which makes up a portion of a vertical channel DRAM. The materials and processes used enable self-alignment of elements of the buried bit line during the fabrication process. In addition, the materials and processes used enable for formation of individual DRAM cells which have a buried bit line width which is 16 nm or less.
    Type: Application
    Filed: May 8, 2013
    Publication date: December 5, 2013
    Inventors: Chorng-Ping Chang, Bingxi Wood, Er-Xuan Ping
  • Publication number: 20130323920
    Abstract: A method of fabricating a self-aligned buried wordline in a structure which contains a self-aligned buried bit line, where the overall structure which makes up a portion of a vertical channel DRAM. The materials and processes used enable self-alignment of elements of the buried wordline during the fabrication process. In addition, the materials and processes used enable for formation of individual DRAM cells which have a buried bit line width which is 16 nm or less and a perpendicular buried wordline width which is 24 nm or less.
    Type: Application
    Filed: May 9, 2013
    Publication date: December 5, 2013
    Inventors: Chorng-Ping Chang, Er-Xuan Ping, Judon Tony Pan
  • Patent number: 8569730
    Abstract: In a first aspect, a memory cell is provided that includes (1) a first conductor; (2) a reversible resistance-switching element formed above the first conductor including (a) a carbon-based resistivity switching material; and (b) a carbon-based interface layer coupled to the carbon-based resistivity switching material; (3) a steering element formed above the first conductor; and (4) a second conductor formed above the reversible resistance-switching element and the steering element. Numerous other aspects are provided.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 29, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Huiwen Xu, April D. Schricker, Er-Xuan Ping
  • Patent number: 8551855
    Abstract: Memory cells, and methods of forming such memory cells, are provided that include a steering element coupled to a carbon-based reversible resistivity switching material that has an increased resistivity, and a switching current that is less than a maximum current capability of the steering element used to control current flow through the carbon-based reversible resistivity switching material. In particular embodiments, methods and apparatus in accordance with this invention form a steering element, such as a diode, having a first width, coupled to a reversible resistivity switching material, such as aC, having a second width smaller than the first width.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: October 8, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Huiwen Xu, Er-Xuan Ping, Xiying Costa
  • Publication number: 20130237056
    Abstract: Some embodiments include methods in which insulative material is simultaneously deposited across both a front side of a semiconductor substrate, and across a back side of the substrate. Subsequently, openings may be etched through the insulative material across the front side, and the substrate may then be dipped within a plating bath to grow conductive contact regions within the openings. The insulative material across the back side may protect the back side from being plated during the growth of the conductive contact regions over the front side. In some embodiments, plasma-enhanced atomic layer deposition may be utilized to for the deposition, and may be conducted at a temperature suitable to anneal passivation materials so that such annealing occurs simultaneously with the plasma-enhanced atomic layer deposition.
    Type: Application
    Filed: April 8, 2013
    Publication date: September 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Junting Liu-Norrod, Er-Xuan Ping, Seiichi Takedai
  • Patent number: 8518184
    Abstract: The present disclosure provides methods and systems for controlling temperature. The method has particular utility in connection with controlling temperature in a deposition process, e.g., in depositing a heat-reflective material via CVD. One exemplary embodiment provides a method that involves monitoring a first temperature outside the deposition chamber and a second temperature inside the deposition chamber. An internal temperature in the deposition chamber can be increased in accordance with a ramp profile by (a) comparing a control temperature to a target temperature, and (b) selectively delivering heat to the deposition chamber in response to a result of the comparison. The target temperature may be determined in accordance with the ramp profile, but the control temperature in one implementation alternates between the first temperature and the second temperature.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: August 27, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Kevin L. Beaman, Trung T. Doan, Lyle D. Breiner, Ronald A. Weimer, Er-Xuan Ping, David J. Kubista, Cem Basceri, Lingyi A. Zheng
  • Patent number: 8481396
    Abstract: Memory cells, and methods of forming such memory cells, are provided that include a steering element coupled to a carbon-based reversible resistivity switching material that has an increased resistivity, and a switching current that is less than a maximum current capability of the steering element used to control current flow through the carbon-based reversible resistivity switching material. In particular embodiments, methods and apparatus in accordance with this invention form a steering element, such as a diode, having a first cross-sectional area, coupled to a reversible resistivity switching material, such as aC, having a region that has a second cross-sectional area smaller than the first cross-sectional area.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 9, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Huiwen Xu, Er-Xuan Ping, Xiying Costa, Thomas J. Kwon
  • Patent number: 8470646
    Abstract: In a first aspect, a method of forming a memory cell is provided that includes (1) forming a metal-insulator-metal (“MIM”) stack above a substrate, the MIM stack including a carbon-based switching material having a resistivity of at least 1×104 ohm-cm; and (2) forming a steering element coupled to the MIM stack. Numerous other aspects are provided.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 25, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Huiwen Xu, Xiying Chen, Er-Xuan Ping
  • Patent number: 8471360
    Abstract: In a first aspect, a method of forming a metal-insulator-metal (“MIM”) stack is provided, the method including: (1) forming a dielectric material having an opening and a first conductive carbon layer within the opening; (2) forming a spacer in the opening; (3) forming a carbon-based switching material on a sidewall of the spacer; and (4) forming a second conductive carbon layer above the carbon-based switching material. A ratio of a cross sectional area of the opening in the dielectric material to a cross sectional area of the carbon-based switching material on the sidewall of the spacer is at least 5. Numerous other aspects are provided.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: June 25, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Franz Kreupl, Er-Xuan Ping, Jingyan Zhang, Huiwen Xu
  • Patent number: 8440567
    Abstract: Some embodiments include methods in which insulative material is simultaneously deposited across both a front side of a semiconductor substrate, and across a back side of the substrate. Subsequently, openings may be etched through the insulative material across the front side, and the substrate may then be dipped within a plating bath to grow conductive contact regions within the openings. The insulative material across the back side may protect the back side from being plated during the growth of the conductive contact regions over the front side. In some embodiments, plasma-enhanced atomic layer deposition may be utilized for the deposition, and may be conducted at a temperature suitable to anneal passivation materials so that such annealing occurs simultaneously with the plasma-enhanced atomic layer deposition.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 14, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Junting Liu, Er-Xuan Ping, Seiichi Takedai
  • Patent number: 8421050
    Abstract: Methods in accordance with this invention form a microelectronic structure by forming a carbon nano-tube (“CNT”) layer, and forming a carbon layer (“carbon liner”) above the CNT layer, wherein the carbon liner comprises: (1) a first portion disposed above and in contact with the CNT layer; and/or (2) a second portion disposed in and/or around one or more carbon nano-tubes in the CNT layer. Numerous other aspects are provided.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: April 16, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Er-Xuan Ping, Huiwen Xu, April D. Schricker, Wipul Pemsiri Jayasekara
  • Patent number: 8384192
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 26, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Patent number: 8309415
    Abstract: Methods of forming memory cells are disclosed which include forming a pillar above a substrate, the pillar including a steering element and a memory element, and performing one or more etches vertically through the memory element, but not the steering element, to form multiple memory cells that share a single steering element. Memory cells formed from such methods, as well as numerous other aspects are also disclosed.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: November 13, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Huiwen Xu, Er-Xuan Ping, Roy E. Scheuerlein
  • Publication number: 20120223414
    Abstract: In some aspects, a method of forming a reversible resistance-switching metal-insulator-metal (“MIM”) stack is provided, the method including: forming a first conducting layer comprising a titanium nitride material having between about 50% Ti and about 95% Ti, forming a carbon nano-tube (CNT) material above the first conducting layer, forming a second conducting layer above the CNT material, and etching the first conducting layer, CNT material and second conducting layer to form the MIM stack. Numerous other aspects are provided.
    Type: Application
    Filed: August 8, 2011
    Publication date: September 6, 2012
    Inventors: April D. Schricker, Er-Xuan Ping
  • Publication number: 20120211824
    Abstract: Raised structures comprising overlying silicon layers formed by controlled selective epitaxial growth, and methods for forming such raised-structure on a semiconductor substrate are provided. The structures are formed by selectively growing an initial epitaxial layer of mono crystalline silicon on the surface of a semi conductive substrate, and forming a thin film of insulative material over the epitaxial layer. A second epitaxial layer is selectively, grown on the exposed surface of the initial epitaxially grown crystal layer, and a thin insulative film is deposited over the second epitaxial layer. Additional epitaxial layers are added as desired to provide a vertical structure of a desired height comprising multiple layers of single silicon crystals, each epitaxial layer have insulated sidewalls, with the uppermost epitaxial layer also with an insulated top surface.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 23, 2012
    Applicant: MOSAID TECHNOLOGIES INCORPORATED
    Inventors: Er-Xuan PING, Jeffrey A. McKee
  • Publication number: 20120193756
    Abstract: In a first aspect, a vertical semiconductor diode is provided that includes (1) a first semiconductor layer formed above a substrate; (2) a second semiconductor layer formed above the first semiconductor layer; (3) a first native oxide layer formed above the first semiconductor layer; and (4) a third semiconductor layer formed above the first semiconductor layer, second semiconductor layer and first native oxide layer so as to form the vertical semiconductor diode that includes the first native oxide layer. Numerous other aspects are provided.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 2, 2012
    Inventors: Steven Maxwell, Abhijit Bandyopadhyay, Kun Hou, Er-Xuan Ping, Yung-Tin Chen, Li Xiao
  • Patent number: 8232167
    Abstract: A method of fabricating transistors on a semiconductor substrate includes forming transistor gates of first and second transistors located in first and second areas of the semiconductor substrate, respectively. The transistor gates have generally vertical sidewalls. Source and drain regions are simultaneously formed for the first and second transistors. Temporary spacers are formed on the vertical sidewalls of the first and second transistor gates. The temporary spacers of the first transistor abut a semiconductor structure such that the source and drain regions of the first transistor are vertically covered. The temporary spacers of the second transistor cover a portion of the source and drain regions of the second transistor such that a portion of the source and drain regions remain exposed. The semiconductor substrate is exposed to an implant dopant to change the dopant level of the exposed portions of the source and drain regions of the second transistors.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: July 31, 2012
    Assignee: Round Rock Research, LLC
    Inventors: Chin-Chen Cho, Er-Xuan Ping
  • Publication number: 20120180716
    Abstract: Methods of cleaning substrates and growing epitaxial silicon thereon are provided. Wafers are exposed to a plasma for a sufficient time prior to epitaxial silicon growth, in order to clean the wafers. The methods exhibit enhanced selectivity and reduced lateral growth of epitaxial silicon. The wafers may have dielectric areas that are passivated by the exposure of the wafer to a plasma.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 19, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Jingyan Zhang, Er-Xuan Ping