Patents by Inventor Eran Gerson

Eran Gerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20210103031
    Abstract: In a recognition method, movement characteristics of an object are determined based on sensor information; image information of the object is determined based on the sensor information; and one or more gesture recognition operations are performed based on the movement characteristics and the image information to generate gesture recognition information. The recognition method may further include determining one or more physical characteristics of the object based on the image information; performing one or more physical characteristic pattern recognition operations based on the one or more physical characteristics to generate pattern recognition information; and generating a recognition output signal based on the gesture recognition information and the pattern recognition information.
    Type: Application
    Filed: June 27, 2018
    Publication date: April 8, 2021
    Inventors: Alon Cohen, Michael Glik, Gaby Prechner, Eran Gerson, Harry G. Skinner
  • Patent number: 10928479
    Abstract: An apparatus for determining a distance to an object is provided. The apparatus includes a first transceiver configured to transmit a first radio frequency signal. Further, the apparatus includes a second transceiver configured to transmit a second radio frequency signal in response to receiving the first radio frequency signal. The apparatus additionally includes a processing circuit configured to determine the distance to the object based on a transmission time of the first radio frequency signal and a reception time, at the first transceiver, of a reflected component of the second radio frequency signal that is reflected by the object.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: February 23, 2021
    Assignee: Apple Inc.
    Inventors: Alon Cohen, Eran Gerson, Gaby Prechner, Michael Bogdanov
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20180341000
    Abstract: An apparatus for determining a distance to an object is provided. The apparatus includes a first transceiver configured to transmit a first radio frequency signal. Further, the apparatus includes a second transceiver configured to transmit a second radio frequency signal in response to receiving the first radio frequency signal. The apparatus additionally includes a processing circuit configured to determine the distance to the object based on a transmission time of the first radio frequency signal and a reception time, at the first transceiver, of a reflected component of the second radio frequency signal that is reflected by the object.
    Type: Application
    Filed: April 12, 2018
    Publication date: November 29, 2018
    Inventors: Alon Cohen, Eran Gerson, Gaby Prechner, Michael Bogdanov
  • Publication number: 20160286011
    Abstract: Various embodiments are generally directed to an apparatus, method and other techniques to generate a packet comprising at least a preamble, a header including a PHY layer termination indicator, and data, determine an end of the packet based on information received from a media access control (MAC) layer, generate an end of packet indicator for the packet. Further, techniques may also include communicating the packet including the preamble, the PHY layer termination indicator, and the data as one or more blocks, at least a portion of the packet communicated with the end of packet indicator.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: ASSAF KASHER, VLADIMIR KRAVTSOV, MICHAEL GENOSSAR, TOM HAREL, ERAN GERSON, SOLOMON TRAININ
  • Patent number: 9225054
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via a dual directional antenna. For example, a device may include a hinge to connect between first and second elements to allow rotating the first element between first and second rotational states with respect to the second element, and a rotatable dual directional wireless communication antenna coupled to the hinge. The dual directional wireless communication antenna may be configured to communicate wireless communication signals in a first direction, when the first element is at the first rotational state, and to communicate the wireless communication signals in a second direction, different from the first direction, when the first element is at the second rotational state.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: December 29, 2015
    Assignee: INTEL CORPORATION
    Inventors: Helen Kankan Pan, Raanan Sover, Eran Gerson
  • Publication number: 20150255852
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via a dual directional antenna. For example, a device may include a hinge to connect between first and second elements to allow rotating the first element between first and second rotational states with respect to the second element, and a rotatable dual directional wireless communication antenna coupled to the hinge. The dual directional wireless communication antenna may be configured to communicate wireless communication signals in a first direction, when the first element is at the first rotational state, and to communicate the wireless communication signals in a second direction, different from the first direction, when the first element is at the second rotational state.
    Type: Application
    Filed: May 21, 2015
    Publication date: September 10, 2015
    Inventors: Helen Kankan Pan, Raanan Sover, Eran Gerson
  • Publication number: 20150194724
    Abstract: Embodiments of millimeter-wave antenna structures are generally described herein. The antenna structure may include an a radiating-element layer comprising a patterned conductive material, a ground layer comprising conductive material disposed on a dielectric substrate, and a feed-line layer comprising conductive material disposed on a dielectric substrate. In some embodiments, the antenna structure may include an air-gap layer disposed between the radiating-element layer and the ground layer. The air-gap layer may include spacing elements to separate the radiating-element layer and the ground layer by a predetermined distance. In some other embodiments, the radiating-element layer may be disposed on a radiating-element dielectric substrate which may include one or more cavities between the radiating-element layer and the ground layer.
    Type: Application
    Filed: August 16, 2013
    Publication date: July 9, 2015
    Inventors: Ana Yepes, Helen Kankan Pan, Mohamed A. Megahed, Bryce Horine, Eran Gerson, Raana Sover
  • Patent number: 9059502
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via a dual directional antenna. For example, a device may include a hinge to connect between first and second elements to allow rotating the first element between first and second rotational states with respect to the second element, and a rotatable dual directional wireless communication antenna coupled to the hinge. The dual directional wireless communication antenna may be configured to communicate wireless communication signals in a first direction, when the first element is at the first rotational state, and to communicate the wireless communication signals in a second direction, different from the first direction, when the first element is at the second rotational state.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: June 16, 2015
    Assignee: INTEL CORPORATION
    Inventors: Helen Kankan Pan, Raanan Sover, Eran Gerson
  • Publication number: 20150139088
    Abstract: Systems, apparatuses, and methods for managing interference in a deployment of wireless devices include functionality for measuring interference in each of a plurality of available millimeter wave channels for each of a plurality of pairs of wireless devices operating in a millimeter wave band and in mutual proximity, selecting a channel for each pair of wireless devices from the plurality of available channels based on the measured interference, and transmitting data between members of each pair in the selected channel.
    Type: Application
    Filed: December 17, 2012
    Publication date: May 21, 2015
    Inventors: Noam Kogan, Eran Gerson, Andrey Pudeyev, Alexander Maltsev
  • Publication number: 20130344907
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via a dual directional antenna. For example, a device may include a hinge to connect between first and second elements to allow rotating the first element between first and second rotational states with respect to the second element, and a rotatable dual directional wireless communication antenna coupled to the hinge. The dual directional wireless communication antenna may be configured to communicate wireless communication signals in a first direction, when the first element is at the first rotational state, and to communicate the wireless communication signals in a second direction, different from the first direction, when the first element is at the second rotational state.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Inventors: Helen Kankan Pan, Raanan Sover, Eran Gerson
  • Patent number: 7912140
    Abstract: A method and a system for reducing computational complexity in a maximum-likelihood MIMO decoder, while maintaining its high performance. A factorization operation is applied on the channel Matrix H. The decomposition creates two matrixes: an upper triangular with only real-numbers on the diagonal and a unitary matrix. The decomposition simplifies the representation of the distance calculation needed for constellation points search. An exhaustive search for all the points in the constellation for two spatial streams t(1), t(2) is performed, searching all possible transmit points of (t2), wherein each point generates a SISO slicing problem in terms of transmit points of (t1); Then, decomposing x,y components of t(1), thus turning a two-dimensional problem into two one-dimensional problems. Finally searching the remaining points of t(1) and using Gray coding in the constellation points arrangement and the symmetry deriving from it to further reduce the number of constellation points that have to be searched.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: March 22, 2011
    Assignee: Lantiq Israel Ltd.
    Inventors: Micha Anholt, Eran Gerson, Koby Vainapel
  • Publication number: 20080240277
    Abstract: A method and a system for reducing computational complexity in a maximum-likelihood MIMO decoder, while maintaining its high performance. A factorization operation is applied on the channel Matrix H. The decomposition creates two matrixes: an upper triangular with only real-numbers on the diagonal and a unitary matrix. The decomposition simplifies the representation of the distance calculation needed for constellation points search. An exhaustive search for all the points in the constellation for two spatial streams t(1), t(2) is performed, searching all possible transmit points of (t2), wherein each point generates a SISO slicing problem in terms of transmit points of (t1); Then, decomposing x,y components of t(1), thus turning a two-dimensional problem into two one-dimensional problems. Finally searching the remaining points of t(1) and using Gray coding in the constellation points arrangement and the symmetry deriving from it to further reduce the number of constellation points that have to be searched.
    Type: Application
    Filed: March 26, 2007
    Publication date: October 2, 2008
    Inventors: Micha Anholt, Eran Gerson, Koby Vainapel