Patents by Inventor Eric C. Cheung

Eric C. Cheung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11769983
    Abstract: A WDM seed beam source for a fiber laser amplifier system that includes a number of master oscillators that generate seed beams at different wavelengths and a spectral multiplexer that multiplexes all of the seed beams onto a single fiber. An EOM modulates the combined seed beams on the single fiber and a spectral demultiplexer then separates the modulated seed beams into their constituent wavelengths on separate fibers before the seed beams are amplified and spectrally combined. The fiber laser amplifier system includes a separate fiber amplifier that amplifies the separated seed beams, an emitter array that directs the amplified beams into free space, beam collimating optics that focuses the uncombined beams, and an SBC grating responsive to the collimated uncombined beams that spatially combines the collimated uncombined beams.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: September 26, 2023
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Gregory D. Goodno, Eric C. Cheung
  • Publication number: 20220352688
    Abstract: A WDM seed beam source for a fiber laser amplifier system that includes a number of master oscillators that generate seed beams at different wavelengths and a spectral multiplexer that multiplexes all of the seed beams onto a single fiber. An EOM modulates the combined seed beams on the single fiber and a spectral demultiplexer then separates the modulated seed beams into their constituent wavelengths on separate fibers before the seed beams are amplified and spectrally combined. The fiber laser amplifier system includes a separate fiber amplifier that amplifies the separated seed beams, an emitter array that directs the amplified beams into free space, beam collimating optics that focuses the uncombined beams, and an SBC grating responsive to the collimated uncombined beams that spatially combines the collimated uncombined beams.
    Type: Application
    Filed: July 1, 2022
    Publication date: November 3, 2022
    Inventors: GREGORY D. GOODNO, ERIC C. CHEUNG
  • Patent number: 11411366
    Abstract: A WDM seed beam source for a fiber laser amplifier system that includes a number of master oscillators that generate seed beams at different wavelengths and a spectral multiplexer that multiplexes all of the seed beams onto a single fiber. An EOM modulates the combined seed beams on the single fiber and a spectral demultiplexer then separates the modulated seed beams into their constituent wavelengths on separate fibers before the seed beams are amplified and spectrally combined. The fiber laser amplifier system includes a separate fiber amplifier that amplifies the separated seed beams, an emitter array that directs the amplified beams into free space, beam collimating optics that focuses the uncombined beams, and an SBC grating responsive to the collimated uncombined beams that spatially combines the collimated uncombined beams.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: August 9, 2022
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Gregory D. Goodno, Eric C. Cheung
  • Patent number: 10935869
    Abstract: An electro-optical modulator (EOM) array that simultaneously modulates a plurality of optical beams. The EOM array has particular application for use in a seed beam source for an SBC fiber laser amplifier system, where the seed beam source includes a plurality of master oscillators each providing an optical seed beam at a different wavelength on a fiber. The EOM array has a common substrate, a plurality of parallel waveguides and an electrode structure, where each waveguide is coupled to one of the fibers to receive one of the seed beams. An RF source provides an RF drive signal to the electrode structure that modulates the seed beams. The fiber laser amplifier system amplifies each of the seed beams from the EOM array, and includes an SBC grating that spatially combines the amplified beams at the different wavelengths so that they are directed in the same direction as an output beam.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: March 2, 2021
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Gregory D. Goodno, Eric C. Cheung, Mark E. Weber
  • Publication number: 20200241383
    Abstract: An electro-optical modulator (EOM) array that simultaneously modulates a plurality of optical beams. The EOM array has particular application for use in a seed beam source for an SBC fiber laser amplifier system, where the seed beam source includes a plurality of master oscillators each providing an optical seed beam at a different wavelength on a fiber. The EOM array has a common substrate, a plurality of parallel waveguides and an electrode structure, where each waveguide is coupled to one of the fibers to receive one of the seed beams. An RF source provides an RF drive signal to the electrode structure that modulates the seed beams. The fiber laser amplifier system amplifies each of the seed beams from the EOM array, and includes an SBC grating that spatially combines the amplified beams at the different wavelengths so that they are directed in the same direction as an output beam.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 30, 2020
    Inventors: GREGORY D. GOODNO, ERIC C. CHEUNG, MARK E. WEBER
  • Publication number: 20200227883
    Abstract: A WDM seed beam source for a fiber laser amplifier system that includes a number of master oscillators that generate seed beams at different wavelengths and a spectral multiplexer that multiplexes all of the seed beams onto a single fiber. An EOM modulates the combined seed beams on the single fiber and a spectral demultiplexer then separates the modulated seed beams into their constituent wavelengths on separate fibers before the seed beams are amplified and spectrally combined. The fiber laser amplifier system includes a separate fiber amplifier that amplifies the separated seed beams, an emitter array that directs the amplified beams into free space, beam collimating optics that focuses the uncombined beams, and an SBC grating responsive to the collimated uncombined beams that spatially combines the collimated uncombined beams.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 16, 2020
    Inventors: GREGORY D. GOODNO, ERIC C. CHEUNG
  • Patent number: 9991678
    Abstract: An optical system, such as a fiber laser amplifier, including a plurality of optical sources, such as fiber amplifiers, each generating a beam. In one embodiment, the system includes first and second diffraction gratings that correct the angle of the propagation direction of the beams to remove angular dispersion caused by a diffractive optical element (DOE). In another embodiment, the system includes a single diffraction grating, where the optical beams pass through the grating twice to also remove the angular dispersion caused by the DOE.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: June 5, 2018
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Peter A. Thielen, William H. Long, Jr., Eric C. Cheung, Gregory D. Goodno
  • Patent number: 9735537
    Abstract: A system includes N master oscillators to generate N master oscillator driving signals. The system includes N splitters to split each of the N master oscillator signals into M coherent signals with M being a positive integer greater than one. A modulator and fiber amplifier stage adjusts the relative phases of the M coherent signals and generates M×N amplified signals. The M×N amplified signals are aggregated into M clusters of N fibers. The system includes M spectral beam combination (SBC) modules to combine each of the M clusters. Each SBC module combines the M×N amplified signals at N wavelengths and generates M tiled output beams. Each SBC module employs a single dimensional (1D) fiber optic array to transmit one cluster of N amplified signals from the M signal clusters and generates one tiled output beam of the M tiled output beams.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: August 15, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Joshua E. Rothenberg, Eric C. Cheung, Gregory D. Goodno
  • Patent number: 8903209
    Abstract: A method of spectral beam combining comprising the steps of projecting a plurality of laser beamlets of different wavelengths onto a first spectrally dispersive element, spatially chirping the plurality of beamlets via the first spectrally dispersive element, rearranging the spatially chirped beamlets with a beam redirecting element, and combining the beamlets into a single output beam via a second spectrally dispersive element.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 2, 2014
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Eric C. Cheung, Stephen P. Palese
  • Patent number: 8786942
    Abstract: A pulsed fiber array laser system that has actively stabilized coherent beam combination (CBC) is disclosed. The active stabilization is accomplished using both piston phase control and intra-pulse phase control, allowing a much greater increase in pulse energy. Further stabilization using intra-pulse amplitude control is also disclosed. A chirp profile can be written on the output pulse to enable specific applications. An amplitude profile of the amplifier array may optionally be tailored to match to a reference electrical pulse. Using the current invention, a much smaller number of amplifier chains will be needed to achieve certain pulse energy, resulting in a system with lower complexity, lower cost, smaller size, less weight, and higher reliability.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: July 22, 2014
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Stephen P. Palese, Eric C. Cheung, Gregory D. Goodno, Chun-Ching Shih, Mark E. Weber
  • Publication number: 20130336344
    Abstract: A pulsed fiber array laser system that has actively stabilized coherent beam combination (CBC) is disclosed. The active stabilization is accomplished using both piston phase control and intra-pulse phase control, allowing a much greater increase in pulse energy. Further stabilization using intra-pulse amplitude control is also disclosed. A chirp profile can be written on the output pulse to enable specific applications. An amplitude profile of the amplifier array may optionally be tailored to match to a reference electrical pulse. Using the current invention, a much smaller number of amplifier chains will be needed to achieve certain pulse energy, resulting in a system with lower complexity, lower cost, smaller size, less weight, and higher reliability.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Inventors: Stephen P. Palese, Eric C. Cheung, Gregory D. Goodno, Chun-Ching Shih, Mark E. Weber
  • Publication number: 20090324170
    Abstract: A method of spectral beam combining comprising the steps of projecting a plurality of laser beamlets of different wavelengths onto a first spectrally dispersive element, spatially chirping the plurality of beamlets via the first spectrally dispersive element, rearranging the spatially chirped beamlets with a beam redirecting element, and combining the beamlets into a single output beam via a second spectrally dispersive element.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Inventors: Eric C. Cheung, Stephen P. Palese
  • Patent number: 5796761
    Abstract: A high efficiency solid state Raman laser system for shifting the frequency of an input beam emitted by a laser pumping system is described. The laser pumping system suppresses relaxation oscillations in the input beam and emits a constant power, mode-locked pulse train. A solid Raman medium is disposed inside a Raman resonator cavity to shift the frequency of the input beam to produce a Raman beam. The frequency of the Raman beam is finely tuned in the resonator cavity to eliminate high order Raman shifted wavelengths. The polarization of the Raman beam is selected using a polarizing element disposed in the resonator cavity. The Raman beam frequency is shifted using a non-linear medium inside the resonator cavity. The non-linear medium is preferably a frequency doubler. The Raman laser system is particularly suitable for producing high-quality yellow light for guide star applications.
    Type: Grant
    Filed: September 11, 1996
    Date of Patent: August 18, 1998
    Assignee: TRW Inc.
    Inventors: Hagop Injeyan, Eric C. Cheung, James G. Ho
  • Patent number: 5721748
    Abstract: An intracavity doubled solid state Raman laser system for converting the frequency of a laser input beam emitted by a laser pumping system is described. A solid Raman medium is disposed within a resonator cavity to shift the frequency of the input beam to produce a Raman beam. The frequency of the Raman beam is tuned in the resonator cavity preferably using an etalon and a birefringent filter. The polarization of the Raman beam is selected using a polarizing element disposed in the resonator cavity. The Raman beam frequency is doubled using a non-linear doubling medium inside the resonator cavity. The Raman laser system is particularly suitable for producing yellow light.
    Type: Grant
    Filed: September 11, 1996
    Date of Patent: February 24, 1998
    Assignee: TRW Inc.
    Inventors: Hagop Injeyan, Eric C. Cheung, James G. Ho
  • Patent number: 5646764
    Abstract: The present invention is a beam scanner for use about a nonlinear optical crystal for frequency conversion. The scanner oscillates the high power laser beam passing through the crystal to reduce heat damage and does not change the direction or the position of the beam upon exiting the scanner. A pair of thick optical plates are affixed to a driven axle being parallel to the laser beam direction. The first plate is mounted at a given angle to the axle and the second plate is mounted at the same but negative angle to the axle so that they are mirror images about the crystal. As the axle rotates, the laser beam moves through the crystal in a cylindrical pattern and due to the manner of mounting the plates, the exiting laser beam is not displaced from the original beam direction or position. The beam scanner may be inserted into an existing optical resonator, for example, without modifications thereto.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: July 8, 1997
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Gerald T. Moore, Karl W. Koch, Eric C. Cheung