Patents by Inventor Eric Choong-Yin Chang

Eric Choong-Yin Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8779754
    Abstract: Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 15, 2014
    Assignee: Altera Corporation
    Inventors: Yan Chong, Joseph Huang, Chiakang Sung, Eric Choong-Yin Chang, Peter Boyle, Adam J. Wright
  • Publication number: 20110221497
    Abstract: Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
    Type: Application
    Filed: February 1, 2011
    Publication date: September 15, 2011
    Inventors: Yan Chong, Joseph Huang, Chiakang Sung, Eric Choong-Yin Chang, Peter Boyle, Adam J. Wright
  • Patent number: 7884619
    Abstract: Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: February 8, 2011
    Assignee: Altera Corporation
    Inventors: Yan Chong, Joseph Huang, Chiakang Sung, Eric Choong-Yin Chang, Peter Boyle, Adam J. Wright
  • Patent number: 7671579
    Abstract: Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: March 2, 2010
    Assignee: Altera Corporation
    Inventors: Yan Chong, Joseph Huang, Chiakang Sung, Eric Choong-Yin Chang, Peter Boyle, Adam J. Wright
  • Patent number: 7277346
    Abstract: A semiconductor system and method for repairing failures of a packaged integrated circuit system are provided. The method includes detecting a failure associated with a packaged integrated circuit system after the packaged integrated circuit system is packaged, and repairing the failure by activating a redundancy circuit in the packaged integrated circuit system and deactivating a defective circuit associated with the failure. The process for repairing the failure includes applying a repair voltage to a polysilicon fuse to change a conductivity state of the polysilicon fuse from a first state to a second state. In another embodiment, the polysilicon fuse is replaced by a metal fuse, an anti-fuse, or a non-volatile random access memory.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: October 2, 2007
    Assignee: Altera Corporation
    Inventors: Irfan Rahim, Peter J. McElheny, Eric Choong-Yin Chang