Patents by Inventor Eric D. Perfecto

Eric D. Perfecto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8381966
    Abstract: A first substrate mounted to a bonder head and a second substrate mounted to a base plate are held at different elevated temperatures at the time of bonding that provide a substantially matched thermal expansion between the second substrate and the first substrate relative to room temperature. Further, the temperature of the solder material portions and the second substrate is raised at least up to the melting temperature after contact. The distance between the first substrate and the second substrate can be modulated to enhance the integrity of solder joints. Once the distance is at an optimum, the bonder head is detached, and the bonded structure is allowed to cool to form a bonded flip chip structure. Alternately, the bonder head can control the cooling rate of solder joints by being attached to the chip during cooling step.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Rajneesh Kumar, Jae-Woong Nah, Eric D. Perfecto
  • Publication number: 20120305633
    Abstract: Solder bumps of uniform height are provided on a substrate through the use of injection molded solder. Copper pillars or ball limiting metallurgy are formed over I/O pads within the channels of a patterned layer of photoresist. Solder is injected over the pillars or BLM, filling the channels. The solder, which does not contain flux, is allowed to solidify. It forms a plurality of solder structures (bumps) of equal heights. Solder injection and solidification are preferably carried out in a nitrogen environment or a forming gas environment. Molten solder can be injected in channels formed in round wafers without spillage using a carrier assembly that accommodates such wafers and a fill head.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Claudius Feger, Mark H. McLeod, Jae-Woong Nah, Eric D. Perfecto
  • Publication number: 20120305631
    Abstract: Solder bumps of uniform height are provided on a substrate through the use of injection molded solder. Copper pillars or ball limiting metallurgy are formed over I/O pads within the channels of a patterned layer of photoresist. Solder is injected over the pillars or BLM, filling the channels. The solder, which does not contain flux, is allowed to solidify. It forms a plurality of solder structures (bumps) of equal heights. Solder injection and solidification are preferably carried out in a nitrogen environment or a forming gas environment. Molten solder can be injected in channels formed in round wafers without spillage using a carrier assembly that accommodates such wafers and a fill head.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Claudius Feger, Mark H. McLeod, Jae-Woong Nah, Eric D. Perfecto
  • Publication number: 20120217287
    Abstract: A first substrate mounted to a bonder head and a second substrate mounted to a base plate are held at different elevated temperatures at the time of bonding that provide a substantially matched thermal expansion between the second substrate and the first substrate relative to room temperature. Further, the temperature of the solder material portions and the second substrate is raised at least up to the melting temperature after contact. The distance between the first substrate and the second substrate can be modulated to enhance the integrity of solder joints. Once the distance is at an optimum, the bonder head is detached, and the bonded structure is allowed to cool to form a bonded flip chip structure. Alternately, the bonder head can control the cooling rate of solder joints by being attached to the chip during cooling step.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Rajneesh Kumar, Jae-Woong Nah, Eric D. Perfecto
  • Patent number: 8197612
    Abstract: Semiconductor packaging techniques are provided which optimize metallurgical properties of a joint using dissimilar solders. A solder composition for Controlled Collapse Chip Connection processing includes a combination of a tin based lead free solder component designed for a chip and a second solder component designed for a laminate. The total concentration of module Ag after reflow is less than 1.9% by weight. A method of manufacturing a solder component is also provided.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A Busby, Minhua Lu, Valerie A Oberson, Eric D Perfecto, Kamalesh K Srivastava, Brian R Sundlof, Julien Sylvestre, Renee L Weisman
  • Publication number: 20110291261
    Abstract: An apparatus, system, and method are disclosed for connecting integrated circuit devices. A plurality of primary electrically conductive contacts and a plurality of primary electrically conductive pillars are electrically coupled to a primary integrated circuit device. The plurality of primary electrically conductive contacts form a pattern corresponding to secondary electrically conductive contacts disposed on one or more secondary integrated circuit devices. The plurality of primary electrically conductive pillars extends away from the primary integrated circuit device. The plurality of primary electrically conductive pillars forms a pattern that corresponds to substrate electrically conductive contacts that are disposed on a substrate.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Fleischman, Eric D. Perfecto, Sudipta K. Ray
  • Publication number: 20110063815
    Abstract: A microcircuit article of manufacture comprises an electrical conductor electrically connected to both a first microcircuit element at a site comprising a first connector site having a first connector site axis and a second microcircuit element at a site comprising a second connector site having a second connector site axis. The first microcircuit element and the second microcircuit element are separated by and operatively associated with a layer comprising a first electrical insulator, whereas the conductor and the first microcircuit element are separated by and operatively associated with a layer comprising a second electrical insulator. At least one of the first electrical insulator layer and the second electrical insulator layer comprise a polymeric electrical insulator. In another embodiment, both electrical insulator layers comprise polymeric insulator layers. The microcircuit includes a UBM and solder connection to a FBEOL via opening.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Applicant: International Business Machines Corporation
    Inventors: Minhua Lu, Eric D. Perfecto, David L. Questad, Sudipta K. Ray
  • Publication number: 20100200271
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S.N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Publication number: 20090266447
    Abstract: Semiconductor packaging techniques are provided which optimize metallurgical properties of a joint using dissimilar solders. A solder composition for Controlled Collapse Chip Connection processing includes a combination of a tin based lead free solder component designed for a chip and a second solder component designed for a laminate. The total concentration of module Ag after reflow is less than 1.9% by weight. A method of manufacturing a solder component is also provided.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: JAMES A. BUSBY, MINHUA LU, VALERIE A. OBERSON, ERIC D. PERFECTO, KAMALESH K. SRIVASTAVA, BRIAN R. SUNDLOF, JULIEN SYLVESTRE, RENEE L. WEISMAN
  • Patent number: 7199450
    Abstract: Sealing a via using a soventless, low viscosity, high temperature stable polymer or a high solids content polymer solution of low viscosity, where the polymeric material is impregnated within the via at an elevated temperature. A supply chamber is introduced to administer the polymeric material at an elevated temperature, typically at a temperature high enough to liquefy the polymeric material. The polymeric material is introduced through heated supply lines under force from a pump, piston, or a vacuum held within said supply chamber.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: April 3, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, Michael Berger, Leena P. Buchwalter, Donald F. Canaperi, Raymond R. Horton, Anurag Jain, Eric D. Perfecto, James A. Tornello
  • Patent number: 6678949
    Abstract: A structure for mounting electronic devices. The structure uses a non-conductive, compliant spacer interposed between an underlying carrier and an overlying thin film. The spacer includes a pattern of through-vias which matches opposing interconnects on opposing surfaces of the carrier and the thin film. In this way, solder connections can extend in the through-vias to electrically connect the thin film to the carrier and smooth out topography. In a related process for forming the structure, the thin film is built on a first sacrificial carrier and then further processed on a second sacrificial carrier to keep it from distorting, expanding, or otherwise suffering adversely during its processing. The solder connections between the thin film and the carrier are formed using a closed solder joining process. The spacer is used with laminate cards to create thermal stress release structures on portions of the cards carrying a thin film.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: January 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: Chandrika Prasad, Roy Yu, Richard L. Canull, Giulio DiGiacomo, Ajay P. Giri, Lewis S. Goldmann, Kimberley A. Kelly, Bouwe W. Leenstra, Voya R. Markovich, Eric D. Perfecto, Sampath Purushothaman, Joseph M. Sullivan
  • Patent number: 6638374
    Abstract: A process for controlling grain growth in the microstructure of thin metal films (e.g., copper or gold) deposited onto a substrate. In one embodiment, the metal film is deposited onto the substrate to form a film having a fine-grained microstructure. The film is heated in a temperature range of 70-100° C. for at least five minutes, wherein the fine-grained microstructure is converted into a stable large-grained microstructure. In another embodiment, the plated film is stored, after the step of depositing, at a temperature not greater than −20° C., wherein the fine-grained microstructure is stabilized without grain growth for the entire storage period.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: October 28, 2003
    Assignee: International Business Machines Corporation
    Inventors: Patrick W. DeHaven, Charles C. Goldsmith, Jeffery L. Hurd, Suryanarayana Kaja, Michele S. Legere, Eric D. Perfecto
  • Publication number: 20020129879
    Abstract: A process for controlling grain growth in the microstructure of thin metal films (e.g., copper or gold) deposited onto a substrate. In one embodiment, the metal film is deposited onto the substrate to form a film having a fine-grained microstructure. The film is heated in a temperature range of 70-100° C. for at least five minutes, wherein the fine-grained microstructure is converted into a stable large-grained microstructure. In another embodiment, the plated film is stored, after the step of depositing, at a temperature not greater than −20° C., wherein the fine-grained microstructure is stabilized without grain growth for the entire storage period.
    Type: Application
    Filed: January 16, 2002
    Publication date: September 19, 2002
    Inventors: Patrick W. DeHaven, Charles C. Goldsmith, Jeffery L. Hurd, Suryanarayana Kaja, Michele S. Legere, Eric D. Perfecto, S. Kathleen Reese
  • Patent number: 6361627
    Abstract: A process for controlling grain growth in the microstructure of thin metal films (e.g., copper or gold) deposited onto a substrate. In one embodiment, the metal film is deposited onto the substrate to form a film having a fine-grained microstructure. The film is heated in a temperature range of 70-100°C. for at least five minutes, wherein the fine-grained microstructure is converted into a stable large-grained microstructure. In another embodiment, the plated film is stored, after the step of depositing, at a temperature not greater than −20° C., wherein the fine-grained microstructure is stabilized without grain growth for the entire storage period.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: March 26, 2002
    Assignee: International Business Machines Corporation
    Inventors: Patrick W. DeHaven, Charles C. Goldsmith, Jeffery L. Hurd, Suryanarayana Kaja, Michele S. Legere, Eric D. Perfecto
  • Publication number: 20010037565
    Abstract: A structure for mounting electronic devices. The structure uses a non-conductive, compliant spacer interposed between an underlying carrier and an overlying thin film. The spacer includes a pattern of through-vias which matches opposing interconnects on opposing surfaces of the carrier and the thin film. In this way, solder connections can extend in the through-vias to electrically connect the thin film to the carrier and smooth out topography. In a related process for forming the structure, the thin film is built on a first sacrificial carrier and then further processed on a second sacrificial carrier to keep it from distorting, expanding, or otherwise suffering adversely during its processing. The solder connections between the thin film and the carrier are formed using a closed solder joining process. The spacer is used with laminate cards to create thermal stress release structures on portions of the cards carrying a thin film.
    Type: Application
    Filed: June 21, 2001
    Publication date: November 8, 2001
    Inventors: Chandrika Prasad, Roy Yu, Richard L. Canull, Giulio DiGiacomo, Ajay P. Giri, Lewis S. Goldmann, Kimberley A. Kelly, Bouwe W. Leenstra, Voya R. Markovich, Eric D. Perfecto, Sampath Purushothaman, Joseph M. Sullivan
  • Patent number: 6281452
    Abstract: A structure for mounting electronic devices which uses a non-conductive, compliant spacer interposed between an underlying carrier and an overlying thin film. The spacer includes a pattern of through-vias which matches opposing interconnects on opposing surfaces of the carrier and the thin film. In this way, solder connections can extend in the through-vias to electrically connect the thin film to the carrier and smooth out topography. In a related process for forming the structure, the thin film is built on a first sacrificial carrier and then further processed on a second sacrificial carrier to keep it from distorting, expanding, or otherwise suffering adversely during its processing. The solder connections between the thin film and the carrier are formed using a closed solder joining process. The spacer is used with laminate cards to create thermal stress release structures on portions of the cards carrying a thin film.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: August 28, 2001
    Assignee: International Business Machines Corporation
    Inventors: Chandrika Prasad, Roy Yu, Richard L. Canull, Giulio DiGiacomo, Ajay P. Giri, Lewis S. Goldmann, Kimberley A. Kelly, Bouwe W. Leenstra, Voya R. Markovich, Eric D. Perfecto, Sampath Purushothaman, Joseph M. Sullivan
  • Patent number: 6235412
    Abstract: A process for producing a terminal metal pad structure electrically interconnecting a package and other components. More particularly, the invention encompasses a process for producing a plurality of corrosion-resistant terminal metal pads. Each pad includes a base pad containing copper which is encapsulated within a series of successively electroplated metal encapsulating films to produce a corrosion-resistant terminal metal pad.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: May 22, 2001
    Assignee: International Business Machines Corporation
    Inventors: Tien-Jen Cheng, Ajay P. Giri, Ashwani K. Malhotra, John R. Pennacchia, Eric D. Perfecto, Roy Yu
  • Patent number: 6183588
    Abstract: A process for fabricating and releasing a thin-film structure from a primary carrier for further processing. The thin-film structure is built on a metal interconnect disposed on a dielectric layer which, in turn, is deposited on a primary carrier. The thin-film structure and metal interconnect are released from the dielectric layer and primary carrier along a release interface defined between the metal interconnect and the dielectric film. Release is accomplished by disturbing the interface, either by laser ablation or dicing.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: February 6, 2001
    Assignee: International Business Machines Corporation
    Inventors: Kimberley A. Kelly, Ashwani K. Malhotra, Eric D. Perfecto, Roy Yu
  • Patent number: 6143117
    Abstract: A process for fabricating and releasing a thin-film structure from a primary carrier for further processing. The thin-film structure is built on a metal interconnect disposed on a dielectric layer which, in turn, is deposited on a primary carrier. The thin-film structure and metal interconnect are released from the dielectric layer and primary carrier along a release interface defined between the metal interconnect and the dielectric film. Release is accomplished by disturbing the interface, either by laser ablation or dicing.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: November 7, 2000
    Assignee: International Business Machines Corporation
    Inventors: Kimberley A. Kelly, Ashwani K. Malhotra, Eric D. Perfecto, Roy Yu
  • Patent number: 6126761
    Abstract: A process for controlling grain growth in the microstructure of thin metal films (e.g., copper or gold) deposited onto a substrate. In one embodiment, the metal film is deposited onto the substrate to form a film having a fine-grained microstructure. The film is heated in a temperature range of 70-100.degree. C. for at least five minutes, wherein the fine-grained microstructure is converted into a stable large-grained microstructure. In another embodiment, the plated film is stored, after the step of depositing, at a temperature not greater than -20.degree. C., wherein the fine-grained microstructure is stabilized without grain growth for the entire storage period.
    Type: Grant
    Filed: June 10, 1998
    Date of Patent: October 3, 2000
    Assignee: International Business Machines Corporation
    Inventors: Patrick W. DeHaven, Charles C. Goldsmith, Jeffrey L. Hurd, deceased, Suryanarayana Kaja, Michele S. Legere, Eric D. Perfecto