Patents by Inventor Eric Englhardt

Eric Englhardt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7894923
    Abstract: In some aspects, a method is provided for mapping contents of a substrate carrier. The method includes (1) moving a carrier to a sensor; and (2) determining, with the sensor, a presence or an absence of a substrate in the carrier based upon a position of a substrate clamp in the carrier. Numerous other aspects are provided.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 22, 2011
    Inventors: Sushant S. Koshti, Eric A. Englhardt, Vinay K. Shah
  • Patent number: 7857570
    Abstract: In one aspect, a substrate loading station for a processing tool includes plural load ports. Each load port is operatively coupled to the processing tool and has a mechanism for opening a substrate carrier. A carrier handler transports substrate carriers from a factory exchange location to the load ports without placing the carriers on any carrier support location other than the load ports. Numerous other aspects are provided.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: December 28, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Martin R. Elliott, Michael R. Rice, Robert B. Lowrance, Jeffrey C. Hudgens, Eric A. Englhardt
  • Publication number: 20100280654
    Abstract: A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, is provided. In one embodiment of the invention, a robot assembly is provided. The robot assembly includes a first motion assembly movable in a first direction, and a second motion assembly, the second motion assembly being coupled to the first motion assembly and being movable relative to the first motion assembly in a second direction that is generally orthogonal to the first direction. The robot assembly further comprises an enclosure disposed in one of the first motion assembly or the second motion assembly, an actuator within the enclosure, and a fan assembly disposed in the enclosure that is adapted to generate a pressure within the enclosure that is less than a pressure outside of the enclosure.
    Type: Application
    Filed: July 20, 2010
    Publication date: November 4, 2010
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 7819079
    Abstract: The present invention generally provides an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that is easily configurable, has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, and then certain portions of the photosensitive material are removed in a developing process completed in the cluster tool.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: October 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Eric A. Englhardt, Michael R. Rice, Jeffrey C. Hudgens, Steve Hongkham, Jay D. Pinson, Mohsen Salek, Charles Carlson, William T Weaver, Helen R. Armer
  • Patent number: 7798764
    Abstract: A method and apparatus for processing substrates using a cluster tool that has an increased system throughput, increased system reliability, improved device yield performance, and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robot assemblies that are configured in a parallel processing configuration and adapted to move in a vertical and a horizontal direction to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. Generally, the various embodiments described herein are advantageous since each row or group of substrate processing chambers are serviced by two or more robots to allow for increased throughput and increased system reliability. Also, the various embodiments described herein are generally configured to minimize and control the particles generated by the substrate transferring mechanisms.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Patent number: 7798309
    Abstract: In a first aspect, a first apparatus is provided for inter-station overhead transport of a substrate carrier. The first apparatus includes (1) an overhead transport mechanism; (2) a substrate carrier support suspended from the overhead transport mechanism and adapted to receive and support a substrate carrier; and (3) a stabilization apparatus adapted to limit rocking of the substrate carrier and substrate carrier support relative to the overhead transport mechanism. Numerous other aspects are provided.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Michael R. Rice, Eric A. Englhardt, Robert B. Lowrance, Martin R. Elliott, Jeffrey C. Hudgens
  • Patent number: 7720557
    Abstract: Systems, tools, and methods are provided in which a first signal is transmitted from a tool to a Fab indicating that all substrates to be processed have been removed from a specific carrier and that the specific carrier may be temporarily unloaded from a loadport of the tool. A second signal is transmitted from the tool to the Fab indicating that the specific carrier may be returned to the tool. While the carrier is unloaded from the tool, other carriers may be loaded on the vacated loadport. Numerous other features and aspects of the invention are disclosed.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Michael Teferra, Amitabh Puri, Eric Englhardt
  • Patent number: 7711445
    Abstract: In a first aspect, a method of managing work in progress within a small lot size semiconductor device manufacturing facility is provided. The first method includes providing a small lot size semiconductor device manufacturing facility having (1) a plurality of processing tools; and (2) a high speed transport system adapted to transport small lot size substrate carriers among the processing tools. The method further includes maintaining a predetermined work in progress level within the small lot size semiconductor device manufacturing facility by (1) increasing an average cycle time of low priority substrates within the small lot size semiconductor device manufacturing facility; and (2) decreasing an average cycle time of high priority substrates within the small lot size semiconductor device manufacturing facility so as to approximately maintain the predetermined work in progress level within the small lot size semiconductor device manufacturing facility. Numerous other aspects are provided.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 4, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Michael R. Rice, Eric A. Englhardt, Vinay Shah, Martin R. Elliott, Robert B. Lowrance, Jeffrey C. Hudgens
  • Patent number: 7684895
    Abstract: In a first aspect, a wafer loading station adapted to exchange wafer carriers with a wafer carrier transport system comprises a biasing element adapted to urge the end effector of the wafer loading station away from a moveable conveyor of the wafer carrier transport system upon the occurrence of a unscheduled event such as a power failure or an emergency shutdown. In a second aspect, an uninterruptible power supply commands a controller to cause the wafer carrier handler to retract the end effector from the wafer carrier transport system upon the occurrence of the unscheduled event, and provides the power necessary for the same. Numerous other aspects are provided.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: March 23, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Michael R. Rice, Eric A. Englhardt, Robert B. Lowrance, Martin R. Elliott, Jeffrey C. Hudgens
  • Patent number: 7673735
    Abstract: In a semiconductor fabrication facility, a conveyor transports substrate carriers. The substrate carriers are unloaded from the conveyor and loaded onto the conveyor without stopping the conveyor. A load and/or unload mechanism lifts the substrate carriers from the conveyor during unloading operations, while matching the horizontal speed of the conveyor. Similarly, during loading operations, the load/unload mechanism lowers a substrate carrier into engagement with the conveyor while matching the horizontal speed of the conveyor. Individual substrates, without carriers, may be similarly loaded and/or unloaded from a conveyor.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: March 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Michael Robert Rice, Robert B. Lowrance, Martin R. Elliott, Jeffrey C. Hudgens, Eric A. Englhardt
  • Patent number: 7651306
    Abstract: Embodiments of the invention provide a method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. Generally, the various embodiments described herein are advantageous since each row or group of substrate processing chambers are serviced by two or more robots to allow for increased throughput and increased system reliability. Also, the various embodiments described herein are generally configured to minimize and control the particles generated by the substrate transferring mechanisms, to prevent device yield and substrate scrap problems that can affect the cost of ownership of the cluster tool.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mike Rice, Jeffrey Hudgens, Charles Carlson, William Tyler Weaver, Robert Lowrance, Eric Englhardt, Dean C. Hruzek, Dave Silvetti, Michael Kuchar, Kirk Van Katwyk, Van Hoskins, Vinay Shah
  • Publication number: 20090308030
    Abstract: In a first aspect, a method of opening a substrate carrier is provided. The method includes moving the substrate carrier such that a door of the substrate carrier contacts a supporting member; employing the supporting member to support the door; moving a housing of the substrate carrier away from the supporting member; and pivoting the supporting member and door below a bottom surface of the substrate carrier. Numerous other aspects are provided.
    Type: Application
    Filed: August 21, 2009
    Publication date: December 17, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Martin R. Elliott, Michael R. Rice, Jeffrey C. Hudgens, Eric A. Englhardt, Victor Belitsky
  • Patent number: 7611318
    Abstract: In a first aspect, a first apparatus is provided for use in supporting a substrate carrier. The first apparatus includes an overhead transfer flange adapted to couple to a substrate carrier body and an overhead carrier support. The overhead transfer flange has a first side and a second side opposite the first side that is wider than the first side. Numerous other aspects are provided.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Michael R. Rice, Martin R. Elliott, Robert B. Lowrance, Jeffrey C. Hudgens, Eric A. Englhardt
  • Patent number: 7603195
    Abstract: In at least one aspect, the invention provides an electronic device fabrication facility (Fab) that uses small lot carriers that may be transparently integrated into an existing Fab that uses large lot carriers. A manufacturing execution system (MES) may interact with the inventive small lot Fab as if the small lot Fab is any other Fab component in an existing large lot Fab without requiring knowledge of how to control small lot Fab components (e.g., beyond specifying a processing recipe). A small lot Fab according to the present invention may encapsulate the small lot Fab's internal use of small lot components and present itself to a large lot Fab's MES as if the small lot Fab is a component that uses large lot carriers.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: October 13, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Amitabh Puri, David Duffin, Eric A. Englhardt
  • Patent number: 7597183
    Abstract: A kinematic pin and a substrate carrier adapted to deter dislodgment of the substrate carrier from the kinematic pin are provided. A shear member on the kinematic pin interacts with a shear feature of the substrate carrier to deter lateral movement of the substrate carrier relative to the kinematic pin. A substrate carrier handler that employs the kinematic pin is also provided.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 6, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Michael R. Rice, Eric A. Englhardt, Robert B. Lowrance, Martin R. Elliott, Jeffrey C. Hudgens
  • Patent number: 7594789
    Abstract: In a first aspect, a first apparatus is provided for use in supporting a substrate carrier. The first apparatus includes an overhead transfer flange adapted to couple to a substrate carrier body and an overhead carrier support. The overhead transfer flange has a first side and a second side opposite the first side that is wider than the first side. Numerous other aspects are provided.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 29, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Michael R. Rice, Martin R. Elliott, Robert B. Lowrance, Jeffrey C. Hudgens, Eric A. Englhardt
  • Publication number: 20090225160
    Abstract: Methods and systems are provided for mapping substrates in a substrate carrier. The invention includes a substrate carrier including one or more windows; and an imaging system coupled to a substrate carrier handling robot and adapted to determine or image substrate positions in the substrate carrier via the one or more windows. Numerous other aspects are provided.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Vinay K. Shah, Sushant S. Koshti, Eric A. Englhardt
  • Patent number: 7578647
    Abstract: In a first aspect, an apparatus is provided for opening a substrate carrier door of a substrate carrier. The apparatus includes a supporting member adapted to (1) support the substrate carrier door at a load port; (2) allow removal of the door from the substrate carrier; and (3) pivot the removed door below a bottom surface of the substrate carrier. Numerous other aspects are provided.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: August 25, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Martin R. Elliott, Michael R. Rice, Jeffrey C. Hudgens, Eric A. Englhardt, Victor Belitsky
  • Publication number: 20090205930
    Abstract: A break-away mounting system for a continuous-motion, high-speed position conveyor system is disclosed. A support cradle may be suspended from a conveyor belt such that the support cradle maintains a fixed position and orientation relative to at least one point on the conveyor belt without inducing appreciable stress on the conveyor belt, the support cradle, or the coupling between the conveyor belt and the support cradle. The mount may include a leading rotatable bearing attached to the support cradle which may releasably engage a first key attached to the conveyor belt, the rotatable bearing adapted to accommodate rotational forces applied to the support cradle by the conveyor belt. The mount may also include a slide bearing attached to the support cradle which may releasably engage a second key attached to the conveyor belt, the slide bearing adapted to accommodate longitudinal forces applied to the support cradle by the conveyor belt.
    Type: Application
    Filed: April 24, 2009
    Publication date: August 20, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Michael R. Rice, Eric A. Englhardt, Robert B. Lowrance, Martin R. Elliot, Jeffrey C. Hudgens
  • Publication number: 20090188103
    Abstract: Systems, methods, and apparatus are provided for electronic device manufacturing. The invention includes removing a first substrate carrier and a second substrate carrier from a moving conveyor using an end effector assembly and concurrently transferring the first and second substrate carriers from the moving conveyor to a support location via the end effector assembly. Numerous other aspects are provided.
    Type: Application
    Filed: January 24, 2009
    Publication date: July 30, 2009
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Martin R. Elliott, Vinay K. Shah, Eric A. Englhardt, Jeffrey C. Hudgens