Patents by Inventor Eric Eva

Eric Eva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130239
    Abstract: An actuator assembly includes a primary electrode, a secondary electrode overlapping at least a portion of the primary electrode, and an electroactive polymer layer disposed between the primary electrode and the secondary electrode, where the electroactive polymer layer includes a non-vertical (e.g., sloped) sidewall with respect to a major surface of at least one of the electrodes. The electroactive polymer layer may be characterized by a non-axisymmetric shape with respect to an axis that is oriented orthogonal to an electrode major surface.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 18, 2024
    Inventors: Kenneth Alexander Diest, Andrew John Ouderkirk, Renate Eva Klementine Landig, Katherine Marie Smyth, Spencer Allan Wells, Tingling Rao, Sheng Ye, Eric Collier Schmitt, Nagi Hosni Elabbasi, Bachir Ahmed Abeid
  • Publication number: 20240027730
    Abstract: A method for producing a mirror of a lithography system includes providing first and second mirror parts. Cooling channels having elongate cooling channel openings in the region of a first connecting surface of the first mirror part are formed in the first mirror part, and/or cooling channels having elongate cooling channel openings in the region of a second connecting surface of the second mirror part are formed in the second mirror part. The method also includes bringing together the first and second mirror parts so that initially a partial region of the first connecting surface and a partial region of the second connecting surface come into contact and form a common contact surface. The common contact surface is enlarged by continuing to bring the first and second mirror parts together in a direction along the longitudinal extents of the cooling channel openings.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 25, 2024
    Inventors: Christoph Zaczek, Erik Loopstra, Eric Eva
  • Publication number: 20240019613
    Abstract: A method for producing a mirror of a microlithographic projection exposure apparatus comprises providing a first mirror part having a first connecting surface and a second mirror part having a second connecting surface is provided. Cooling channels and/or auxiliary channels are formed in the second mirror part. The method also includes bringing together the first and second mirror parts so that initially a partial region of the first connecting surface and a partial region of the second connecting surface come into contact and form a common contact surface. The method further includes enlarging the contact surface by continuing to bring the first and second mirror parts together in a transverse direction with respect to the cooling channels or auxiliary channels.
    Type: Application
    Filed: September 27, 2023
    Publication date: January 18, 2024
    Inventors: Christoph Zaczek, Erik Loopstra, Eric Eva
  • Patent number: 11874525
    Abstract: An optical element reflects radiation, such as EUV radiation. The optical element includes a substrate with a surface to which a reflective coating is applied. The substrate has at least one channel through which a coolant can flow. The substrate is formed from fused silica, such as titanium-doped fused silica, or a glass ceramic. The channel has a length of at least 10 cm below the surface to which the reflective coating is applied. The cross-sectional area of the channel varies by no more than +/?20% over the length of the channel.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: January 16, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Eric Eva
  • Publication number: 20230375939
    Abstract: A method for producing a mirror of a projection exposure apparatus for microlithography includes providing at least one material blank. The material blank comprises a material with a very low coefficient of thermal expansion and has fault zones within which at least one material parameter deviates from a specified value by more than a minimum deviation. A first mirror part having a first connecting surface is produced from the material blank. A second mirror part having a second connecting surface is produced from the material blank or a further material blank. The first and second mirror parts are permanently connected to one another in the region of the first and second connecting surfaces.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Christoph Zaczek, Erik Loopstra, Eric Eva
  • Publication number: 20230050280
    Abstract: A computer-implemented method of verifying a user's identity comprising the steps of receiving biometric user data, personalized user data, and unique phone data of a verifying user from the verifying user's electronic computing device 102, compiling the biometric user data, personalized user data, and unique phone data of a verifying user into a single user identity data file, encrypting the single user identity data file and generating a data decryption key, and segregating the single user identity data file into a plurality of encrypted segregated user identity data files each independently stored on a first administrator server and a second administrator server, wherein the plurality of encrypted segregated user identity data files may only be aggregated and decrypted upon providing secondary biometric user data, personalized user data, and unique phone data which matches the original biometric user data, personalized user data, and unique phone data of the verifying user.
    Type: Application
    Filed: August 17, 2022
    Publication date: February 16, 2023
    Inventors: Marc Duthoit, Eric Eva-Candela
  • Publication number: 20220299731
    Abstract: An optical element reflects radiation, such as EUV radiation. The optical element includes a substrate with a surface to which a reflective coating is applied. The substrate has at least one channel through which a coolant can flow. The substrate is formed from fused silica, such as titanium-doped fused silica, or a glass ceramic. The channel has a length of at least 10 cm below the surface to which the reflective coating is applied. The cross-sectional area of the channel varies by no more than +/?20% over the length of the channel.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 22, 2022
    Inventor: Eric Eva
  • Patent number: 11126087
    Abstract: A component for a mirror array for EUV lithography, particularly for use in faceted mirrors in illumination systems of EUV lithography devices. A component (500) for a mirror array for EUV lithography is proposed which is at least partially made from a composite material including matrix material (502) that contains copper and/or aluminium, and reinforcing material in the form of fibers (504). The composite material also includes particles (508) that consist of one or more of the materials from the group: graphite, adamantine carbon, and ceramic.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 21, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventor: Eric Eva
  • Patent number: 11099484
    Abstract: A cost-effective method for repairing reflective optical elements for EUV lithography. These optical elements (60) have a substrate (61) and a coating (62) that reflects at a working wavelength in the range between 5 nm and 20 nm and is damaged as a result of formation of hydrogen bubbles. The method includes: localizing a damaged area (63, 64, 65, 66) in the coating (62) and covering the damaged area (63, 64, 65, 66) with one or more materials having low hydrogen permeability by applying a cover element to the damaged area. The cover element is formed of a surface structure, a convex or concave surface, or a coating corresponding to the coating of the reflective optical element, or a combination thereof. The method is particularly suitable for collector mirrors (70) for EUV lithography. After the repair, the optical elements have cover elements (71, 72, 73).
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: August 24, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Robert Meier, Holger Kierey, Christof Jalics, Eric Eva, Ralf Winter, Arno Schmittner, Alexey Kuznetsov, Vitaliy Shklover, Christoph Nottbohm, Wolfgang Merkel
  • Publication number: 20210116616
    Abstract: In order to reduce the degree of relaxation after an optical substrate has been compacted, in particular after a longer period, substrates (51) or reflective optical elements (50), in particular for EUV lithography, with substrates (51) of this type, are proposed. These substrates (51), which have a surface region (511) with a reflective coating (54), are characterised in that, at least near to the surface region (511), the titanium-doped quartz glass has a proportion of Si—O—O—Si bonds of at least 1*1016/cm3 and/or a proportion of Si—Si bonds of at least 1*1016/cm3 or, along a notional line (513) perpendicular to the surface region (511), over a length (517) of 500 nm or more, a hydrogen content of more than 5×1018 molecules/cm3.
    Type: Application
    Filed: December 29, 2020
    Publication date: April 22, 2021
    Inventor: Eric EVA
  • Patent number: 10976667
    Abstract: An optical manipulator (MAN) includes an optical element (OE), in particular composed of fused silica, and an actuating device (DR) that reversibly changes the surface form (SF) of the optical element (OE). The actuating device (DR) has a plurality of actuators (AK) that mechanically act on the optical element (OE) at a plurality of contact areas. The optical element (OE) at least at action regions in vicinities of the contact areas of the actuators (AK) is prestressed to an compressive stress of more than 1 MPa, preferably of more than 100 MPa, particularly preferably of more than 500 MPa. Also disclosed are a projection lens provided with at least one such optical manipulator (MAN), a projection exposure apparatus having such a projection lens, and a method for producing such an optical manipulator (MAN).
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: April 13, 2021
    Assignee: CARL ZEISS SMT GMBH
    Inventor: Eric Eva
  • Patent number: 10649340
    Abstract: In order to prevent delamination of a reflective coating from the substrate under the influence of reactive hydrogen, a reflective optical element (50) for EUV lithography is provided, which has a substrate (51) and a reflective coating (54) for reflecting radiation in the wavelength range of 5 nm to 20 nm. A functional layer (60) is arranged between the reflective coating (54) and the substrate (51). With the functional layer, the concentration of hydrogen in atom % at the side of the substrate facing the reflective coating is reduced by at least a factor of 2.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: May 12, 2020
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Dirk Heinrich Ehm, Vitaliy Shklover, Irene Ament, Stefan-Wolfgang Schmidt, Moritz Becker, Stefan Wiesner, Diana Urich, Robert Meier, Ralf Winter, Christof Jalics, Holger Kierey, Eric Eva
  • Publication number: 20190302628
    Abstract: A cost-effective method for repairing reflective optical elements for EUV lithography. These optical elements (60) have a substrate (61) and a coating (62) that reflects at a working wavelength in the range between 5 nm and 20 nm and is damaged as a result of formation of hydrogen bubbles. The method includes: localizing a damaged area (63, 64, 65, 66) in the coating (62) and covering the damaged area (63, 64, 65, 66) with one or more materials having low hydrogen permeability by applying a cover element to the damaged area. The cover element is formed of a surface structure, a convex or concave surface, or a coating corresponding to the coating of the reflective optical element, or a combination thereof. The method is particularly suitable for collector mirrors (70) for EUV lithography. After the repair, the optical elements have cover elements (71, 72, 73).
    Type: Application
    Filed: June 6, 2019
    Publication date: October 3, 2019
    Inventors: Robert MEIER, Holger KIEREY, Christof JALICS, Eric EVA, Ralf WINTER, Arno SCHMITTNER, Alexey KUZNETSOV, Vitaliy SHKLOVER, Christoph NOTTBOHM, Wolfgang MERKEL
  • Patent number: 10427965
    Abstract: A method for loading a blank composed of fused silica with hydrogen, including loading the blank at a first temperature (T1) and a first hydrogen partial pressure (p1), and further loading the blank at a second temperature (T2) which is different from the first temperature and at a second hydrogen partial pressure (p2) which is different from the first hydrogen partial pressure. The first and second temperatures (T1, T2) are lower than a limit temperature (TL) at which a thermal formation of silane in the fused silica of the blank commences. Also disclosed are a lens element produced from such a blank and a projection lens that includes at least one such lens element.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: October 1, 2019
    Assignee: CARL ZEISS SMT GMBH
    Inventor: Eric Eva
  • Publication number: 20190212654
    Abstract: A component for a mirror array for EUV lithography, particularly for use in faceted mirrors in illumination systems of EUV lithography devices. A component (500) for a mirror array for EUV lithography is proposed which is at least partially made from a composite material including matrix material (502) that contains copper and/or aluminium, and reinforcing material in the form of fibers (504). The composite material also includes particles (508) that consist of one or more of the materials from the group: graphite, adamantine carbon, and ceramic.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventor: Eric EVA
  • Publication number: 20190171108
    Abstract: In order to prevent delamination of a reflective coating from the substrate under the influence of reactive hydrogen, a reflective optical element (50) for EUV lithography is provided, which has a substrate (51) and a reflective coating (54) for reflecting radiation in the wavelength range of 5 nm to 20 nm. A functional layer (60) is arranged between the reflective coating (54) and the substrate (51). With the functional layer, the concentration of hydrogen in atom % at the side of the substrate facing the reflective coating is reduced by at least a factor of 2.
    Type: Application
    Filed: January 25, 2019
    Publication date: June 6, 2019
    Inventors: Dirk Heinrich EHM, Vitaliy SHKLOVER, Irene AMENT, Stefan-Wolfgang SCHMIDT, Moritz BECKER, Stefan WIESNER, Diana URICH, Robert MEIER, Ralf WINTER, Christof JALICS, Holger KIEREY, Eric EVA
  • Publication number: 20170108780
    Abstract: An optical manipulator (MAN) includes an optical element (OE), in particular composed of fused silica, and an actuating device (DR) that reversibly changes the surface form (SF) of the optical element (OE). The actuating device (DR) has a plurality of actuators (AK) that mechanically act on the optical element (OE) at a plurality of contact areas. The optical element (OE) at least at action regions in vicinities of the contact areas of the actuators (AK) is prestressed to an compressive stress of more than 1 MPa, preferably of more than 100 MPa, particularly preferably of more than 500 MPa. Also disclosed are a projection lens provided with at least one such optical manipulator (MAN), a projection exposure apparatus having such a projection lens, and a method for producing such an optical manipulator (MAN).
    Type: Application
    Filed: December 30, 2016
    Publication date: April 20, 2017
    Inventor: Eric EVA
  • Publication number: 20160145137
    Abstract: A method for loading a blank composed of fused silica with hydrogen, including loading the blank at a first temperature (T1) and a first hydrogen partial pressure (p1), and further loading the blank at a second temperature (T2) which is different from the first temperature and at a second hydrogen partial pressure (p2) which is different from the first hydrogen partial pressure. The first and second temperatures (T1, T2) are lower than a limit temperature (TL) at which a thermal formation of silane in the fused silica of the blank commences. Also disclosed are a lens element produced from such a blank and a projection lens that includes at least one such lens element.
    Type: Application
    Filed: February 2, 2016
    Publication date: May 26, 2016
    Inventor: Eric EVA
  • Patent number: 9036152
    Abstract: A method for determining the absorption of a blank (2) for producing an optical element (3), including: radiating a heating light ray (8) through the blank (2) for the purpose of heating the blank (2), and determining the absorption in the blank (2) by measuring at least one property of a measurement light ray (10) influenced by the heating of the blank (2). In the method, either the heating light ray (8) and the measurement light ray (10) or the heating light ray and a further heating light ray are oriented to enter into the blank (2) through a first polished surface (2a) or a second polished surface (2b), situated opposite the first surface, and meet one another exclusively in the interior of the blank (2), preferably in a volume (12) used for the production of the optical element (3). An associated measuring apparatus (1), optical element (3), and optical arrangement are also disclosed.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: May 19, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Eric Eva
  • Patent number: 8891172
    Abstract: The disclosure relates to an optical element configure to at least partial spatially resolve correction of a wavefront aberration of an optical system (e.g., a projection exposure apparatus for microlithography) to which optical radiation can be applied, as well as related systems and methods.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: November 18, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Eric Eva, Payam Tayebati, Michael Thier, Markus Hauf, Ulrich Schoenhoff, Ole Fluegge, Arif Kazi, Alexander Sauerhoefer, Gerhard Focht, Jochen Weber, Toralf Gruner