Patents by Inventor Eric H. Miller

Eric H. Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200035974
    Abstract: In at least one embodiment, a separator is provided with a fibrous mat for retaining the active material on an electrode of a lead-acid battery. New or improved mats, separators, batteries, methods, and/or systems are also disclosed, shown, claimed, and/or provided. For example, in at least one possibly preferred embodiment, a composite separator is provided with a fibrous mat for retaining the active material on an electrode of a lead-acid battery. In at least one possibly particularly preferred embodiment, a PE membrane separator is provided with at least one fibrous mat for retaining the active material on an electrode of a lead-acid battery. In accordance with at least certain embodiments, aspects and/or objects, the present invention, application, or disclosure may provide solutions, new products, improved products, new methods, and/or improved methods, and/or may address issues, needs, and/or problems of PAM shedding.
    Type: Application
    Filed: February 9, 2018
    Publication date: January 30, 2020
    Inventors: ERIC H. Miller, Ahila Krishnamoorthy, James P. Perry, J. Kevin Whear
  • Publication number: 20190260003
    Abstract: A multilayer deep cycle battery separator comprising at least two layers of an automotive-sized separator bonded or welded together. The automotive-sized separator layers include a backweb having a backweb thickness between 6 to 10 mils, an overall thickness of between 25 to 65 mils, and a rib base width of between 20 to 35 mils. The automotive-sized separator layers also have an extraction time of between 45 to 75 seconds, thereby providing an overall extraction time of less than a standard deep cycle battery separator.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: J. Kevin Whear, Eric H. Miller
  • Publication number: 20190260002
    Abstract: A battery separator for a lead acid (storage) battery is made from a thermoplastic sheet material. The sheet material has a central region flanked by peripheral regions. The central region includes a plurality of longitudinally extending ribs that are integrally formed from the sheet material. The peripheral regions are free of ribs and may include a densified structure. Also disclosed are a method of producing the foregoing separator, an envelope separator made from the sheet material, and a method of making the envelope separator.
    Type: Application
    Filed: January 2, 2019
    Publication date: August 22, 2019
    Inventors: J. Kevin Whear, Eric H. Miller, Salvatore Cardillo, Daniel Dreyer
  • Publication number: 20190221805
    Abstract: In accordance with at least selected embodiments, the present disclosure or invention is directed to improved battery separators, high conductance separators, improved lead-acid batteries, such as flooded lead-acid batteries, high conductance batteries, improved systems, and/or, improved vehicles including such batteries, and/or methods of manufacture or use of such separators or batteries, and/or combinations thereof. In accordance with at least certain embodiments, the present disclosure or invention is directed to improved lead acid batteries incorporating the improved separators and which exhibit increased conductance. Particular, non-limiting examples may include lead acid battery separators having structure or features designed to improve conductance, lower ER, lower water loss, and the like.
    Type: Application
    Filed: September 1, 2017
    Publication date: July 18, 2019
    Inventors: Eric H. MILLER, Nicholas R. Shelton, William L. Walter
  • Publication number: 20190189986
    Abstract: Improved battery separators, batteries, and systems, as well as methods relating thereto are disclosed herein for use in various lead acid batteries such as valve-regulated lead acid (VRLA) batteries that include one or more AGM layers. The improved battery separators described herein may provide a battery system with an advantage of a significantly decreased acid filling time and a significantly increased acid filling speed. Various improved batteries, methods and systems are described herein using such improved battery separators that increase acid filling speed and decrease acid filling time for a VRLA battery.
    Type: Application
    Filed: November 26, 2018
    Publication date: June 20, 2019
    Inventors: Eric H. Miller, Robert W. Saffel
  • Patent number: 10276850
    Abstract: A multilayer deep cycle battery separator comprising at least two layers of an automotive-sized separator bonded or welded together. The automotive-sized separator layers include a backweb having a backweb thickness between 6 to 10 mils, an overall thickness of between 25 to 65 mils, and a rib base width of between 20 to 35 mils. The automotive-sized separator layers also have an extraction time of between 45 to 75 seconds, thereby providing an overall extraction time of less than a standard deep cycle battery separator.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: April 30, 2019
    Assignee: Daramic, LLC
    Inventors: J. Kevin Whear, Eric H. Miller
  • Patent number: 10249863
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: April 2, 2019
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
  • Patent number: 10186701
    Abstract: A battery separator for a lead acid (storage) battery is made from a thermoplastic sheet material. The sheet material has a central region flanked by peripheral regions. The central region includes a plurality of longitudinally extending ribs that are integrally formed from the sheet material. The peripheral regions are free of ribs and may include a densified structure. Also disclosed are a method of producing the foregoing separator, an envelope separator made from the sheet material, and a method of making the envelope separator.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 22, 2019
    Assignee: Daramic, LLC
    Inventors: J. Kevin Whear, Eric H. Miller, Salvatore Cardillo, Daniel Dreyer
  • Publication number: 20180366710
    Abstract: Disclosed herein are improved separators for lead acid batteries. The separators may include a porous membrane, a rubber, and at least one performance enhancing additive, positive and/or negative ribs, and/or lowered acid leachable total organic carbon.
    Type: Application
    Filed: June 20, 2018
    Publication date: December 20, 2018
    Inventors: J. Kevin WHEAR, Eric H. Miller, Naoto Miyake, Joerg Deiters
  • Patent number: 10141556
    Abstract: Improved battery separators, batteries, and systems, as well as methods relating thereto are disclosed herein for use in various lead acid batteries such as valve-regulated lead acid (VRLA) batteries that include one or more AGM layers. The improved battery separators described herein may provide a battery system with an advantage of a significantly decreased acid filling time and a significantly increased acid filling speed. Various improved batteries, methods and systems are described herein using such improved battery separators that increase acid filling speed and decrease acid filling time for a VRLA battery.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: November 27, 2018
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Robert W. Saffel
  • Publication number: 20180254461
    Abstract: A battery separator for a lead/acid battery is resistant to oxidation arising from the use of water or acid containing contaminants, for example chromium (Cr), manganese (Mn), titanium (Ti), copper (Cu), and the like. The separator is a microporous membrane including a rubber. The rubber is no more than about 12% by weight of the separator. The rubber may be rubber latex, tire crumb, and combinations thereof. The rubber may be impregnated into the microporous membrane. The microporous membrane may be a microporous sheet of polyolefin, polyvinyl chloride, phenol-formaldehyde resins, cross-linked rubber, or nonwoven fibers. A method for preventing the oxidation and/or extending battery life of the separator is also included.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 6, 2018
    Inventors: Eric H. Miller, J. Kevin Whear, Jeffrey K. Chambers
  • Publication number: 20180175352
    Abstract: A separator for a lead acid battery is a porous membrane having a positive electrode face and a negative electrode face. A plurality of longitudinally extending ribs, a plurality of protrusions or a nonwoven material may be disposed upon the positive electrode face. A plurality of transversely extending ribs are disposed upon the negative electrode face. The transverse ribs disposed upon the negative electrode face are preferably juxtaposed to a negative electrode of the lead acid battery, when the separator is placed within that battery.
    Type: Application
    Filed: February 19, 2018
    Publication date: June 21, 2018
    Inventors: Eric H. Miller, J. Kevin Whear
  • Patent number: 9991487
    Abstract: A battery separator for a lead/acid battery is resistant to oxidation arising from the use of water or acid containing contaminants, for example chromium (Cr), manganese (Mn), titanium (Ti), copper (Cu), and the like. The separator is a microporous membrane including a rubber. The rubber is no more than about 12% by weight of the separator. The rubber may be rubber latex, tire crumb, and combinations thereof. The rubber may be impregnated into the microporous membrane. The microporous membrane may be a microporous sheet of polyolefin, polyvinyl chloride, phenol-formaldehyde resins, cross-linked rubber, or nonwoven fibers. A method for preventing the oxidation and/or extending battery life of the separator is also included.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 5, 2018
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, J. Kevin Whear, Jeffrey K. Chambers
  • Patent number: 9935302
    Abstract: A separator for a lead acid battery is a porous membrane having a positive electrode face and a negative electrode face. A plurality of longitudinally extending ribs, a plurality of protrusions or a nonwoven material may be disposed upon the positive electrode face. A plurality of transversely extending ribs are disposed upon the negative electrode face. The transverse ribs disposed upon the negative electrode face are preferably juxtaposed to a negative electrode of the lead acid battery, when the separator is placed within that battery.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: April 3, 2018
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, J. Kevin Whear
  • Publication number: 20180029276
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 1, 2018
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Publication number: 20170294636
    Abstract: A battery separator has performance enhancing additives or coatings, fillers with increased friability, increased ionic diffusion, decreased tortuosity, increased wettability, reduced oil content, reduced thickness, decreased electrical resistance, and/or increased porosity. The separator in a battery reduces the water loss, lowers acid stratification, lowers the voltage drop, and/or increases the CCA.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Inventors: Mohammed Naiha, Joerg Deiters, Ahila Krishnamoorthy, Eric H. Miller, J. Kevin Whear, Robert W. Saffel, Naoto Miyake, Kanak Kuwelkar
  • Publication number: 20170288277
    Abstract: In accordance with at least selected embodiments or aspects, the present invention is directed to improved, unique, and/or complex performance lead acid battery separators, such as improved flooded lead acid battery separators, batteries including such separators, methods of production, and/or methods of use. The preferred battery separator of the present invention addresses and optimizes multiple separator properties simultaneously. It is believed that the present invention is the first to recognize the need to address multiple separator properties simultaneously, the first to choose particular multiple separator property combinations, and the first to produce commercially viable multiple property battery separators, especially such a separator having negative cross ribs.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Inventors: J. Kevin Whear, Eric H. Miller, Margaret R. Roberts
  • Patent number: 9725566
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 8, 2017
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, Kevin J. Whear
  • Publication number: 20170207434
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 20, 2017
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
  • Patent number: D847746
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 7, 2019
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, M. Neal Golovin, Ahila Krishnamoorthy, James P. Perry, J. Kevin Whear