Patents by Inventor Eric J. Kauffman

Eric J. Kauffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9280797
    Abstract: A system and method to preemptively adjust power generation of one or more non-solar power generators based on near term solar generation capability, spinning reserve margin, and/or power grid spinning reserve forecast requirements to offset solar power generation based on geospatial regional solar conditions.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 8, 2016
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Dale J. Davis, Eric J. Kauffman, Timothy Tah-teh Yang
  • Patent number: 9097182
    Abstract: A system includes a radiation sensor configured to direct a field of view toward at least one conduit along a fluid flow path into a heat exchanger. The radiation sensor is configured to output a signal indicative of a temperature of the at least one conduit. The system also includes a controller communicatively coupled to the radiation sensor. The controller is configured to determine the temperature based on the signal, to compare the temperature to a threshold range, and to adjust a fluid flow through the fluid flow path or the at least one conduit if the temperature deviates from the threshold range.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: August 4, 2015
    Assignee: General Electric Company
    Inventors: Rahul Jaikaran Chillar, Julio E. Mestroni, Eric J. Kauffman, Adil Ansari
  • Patent number: 9019108
    Abstract: A system includes a radiation sensor configured to direct a field of view toward a conduit within a heat recovery steam generator, and to output a signal indicative of a temperature of the conduit. The system also includes a controller communicatively coupled to the radiation sensor. The controller is configured to determine the temperature based on the signal, and to compare the temperature to a threshold value.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: April 28, 2015
    Assignee: General Electric Company
    Inventors: Rahul Jaikaran Chillar, Eric J. Kauffman, Adil Ansari
  • Publication number: 20150081124
    Abstract: A system and method to preemptively adjust power generation of one or more non-solar power generators based on near term solar generation capability, spinning reserve margin, and/or power grid spinning reserve forecast requirements to offset solar power generation based on geospatial regional solar conditions.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Dale J. Davis, Eric J. Kauffman, Timothy Tah-teh Yang
  • Publication number: 20150076821
    Abstract: A system and method to preemptively adjust power generation of one or more non-wind power generators based on near term wind generation capability, spinning reserve margin, and/or power grid spinning reserve forecast requirements to offset wind power generation based on geospatial regional wind conditions.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Dale J. Davis, Eric J. Kauffman, Timothy Tah-teh Yang
  • Patent number: 8963353
    Abstract: A system and method to preemptively adjust power generation of one or more non-wind power generators based on near term wind generation capability, spinning reserve margin, and/or power grid spinning reserve forecast requirements to offset wind power generation based on geospatial regional wind conditions.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Dale J. Davis, Eric J. Kauffman, Timothy Tah-teh Yang
  • Patent number: 8627643
    Abstract: A system includes a radiation detector array configured to direct a field of view toward multiple conduits within a fluid flow path from a turbine into a heat exchanger. The radiation detector array is configured to output a signal indicative of a multi-dimensional temperature profile of the fluid flow path based on thermal radiation emitted by the conduits. The system also includes a controller communicatively coupled to the radiation detector array. The controller is configured to determine a temperature variation across the fluid flow path based on the signal, and to compare the temperature variation to a threshold value.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: January 14, 2014
    Assignee: General Electric Company
    Inventors: Rahul Jaikaran Chillar, Julio E. Mestroni, Eric J. Kauffman, Adil Ansari
  • Publication number: 20120032810
    Abstract: A system includes a radiation sensor configured to direct a field of view toward a conduit within a heat recovery steam generator, and to output a signal indicative of a temperature of the conduit. The system also includes a controller communicatively coupled to the radiation sensor. The controller is configured to determine the temperature based on the signal, and to compare the temperature to a threshold value.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: General Electric Company
    Inventors: Rahul Jaikaran Chillar, Eric J. Kauffman, Adil Ansari
  • Publication number: 20120031581
    Abstract: A system includes a radiation sensor configured to direct a field of view toward at least one conduit along a fluid flow path into a heat exchanger. The radiation sensor is configured to output a signal indicative of a temperature of the at least one conduit. The system also includes a controller communicatively coupled to the radiation sensor. The controller is configured to determine the temperature based on the signal, to compare the temperature to a threshold range, and to adjust a fluid flow through the fluid flow path or the at least one conduit if the temperature deviates from the threshold range.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: General Electric Company
    Inventors: Rahul Jaikaran Chillar, Julio E. Mestroni, Eric J. Kauffman, Adil Ansari
  • Publication number: 20120031106
    Abstract: A system includes a radiation detector array configured to direct a field of view toward multiple conduits within a fluid flow path from a turbine into a heat exchanger. The radiation detector array is configured to output a signal indicative of a multi-dimensional temperature profile of the fluid flow path based on thermal radiation emitted by the conduits. The system also includes a controller communicatively coupled to the radiation detector array. The controller is configured to determine a temperature variation across the fluid flow path based on the signal, and to compare the temperature variation to a threshold value.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: General Electric Company
    Inventors: Rahul Jaikaran Chillar, Julio E. Mestroni, Eric J. Kauffman, Adil Ansari
  • Publication number: 20110298287
    Abstract: The present invention relates to an apparatus and method for improving the transportation and installation of portable step-up power transformers for a power generating station due to failure or unavailability of installed step up transformers. A large MVA portable transformer may be used to alleviate or minimize these issues by being purpose built for transportability and commissioning speed. The portable transformer is transportable by road or lighter rail. Its size and weight are arranged to overcome restrictions such was weight limits, bridge constraints, and power line constraints. This device may also provide for rapid commissioning and decommissioning. This transformer may be a set of three single-phase units of sufficient size to be used as a generator step up transformer in three-phase operation.
    Type: Application
    Filed: August 8, 2011
    Publication date: December 8, 2011
    Applicant: General Electric Company
    Inventors: Geoffrey A. Cobb, Eric J. Kauffman, Sterling R. Rosten, Ellen M. Dumas
  • Publication number: 20100090543
    Abstract: The present invention relates to an apparatus and method for improving the transportation and installation of portable step-up power transformers for a power generating station due to failure or unavailability of installed step up transformers. A large MVA portable transformer may be used to alleviate or minimize these issues by being purpose built for transportability and commissioning speed. The portable transformer is transportable by road or lighter rail. Its size and weight are arranged to overcome restrictions such was weight limits, bridge constraints, and power line constraints. This device may also provide for rapid commissioning and decommissioning. This transformer may be a set of three single-phase units of sufficient size to be used as a generator step up transformer in three-phase operation.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Inventors: Geoffrey A. Cobb, Eric J. Kauffman, Sterling R. Rosten, Ellen M. Dumas
  • Patent number: 7050943
    Abstract: A system and method are provided for monitoring the operation of a plurality of turbines in respective operating locations. The method includes inputting operation data from each of the turbines and processing the operation data to generate secondary operation data. Further, the method also includes generating at least one report based on the secondary operation data.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: May 23, 2006
    Assignee: General Electric Company
    Inventors: Eric J. Kauffman, Richard J. Rucigay, Troy P. Christensen
  • Patent number: 6760689
    Abstract: The system and method of the invention provide for remotely monitoring the operation of at least one turbine, the turbine being disposed in an operating location. The method comprises inputting input data from the turbine; and processing the input data to generate verified performance data, the processing including determining validity of the input data and performing at least one calculation on the input data, which is valid, to generate the verified performance data. The method further includes generating a collection of stored data in a database based on at least one of the input data and the verified performance data.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: July 6, 2004
    Assignee: General Electric Co.
    Inventors: Gordon J Follin, Eric J. Kauffman
  • Publication number: 20030163288
    Abstract: The system and method of the invention provide for remotely monitoring the operation of at least one turbine, the turbine being disposed in an operating location. The method comprises inputting input data from the turbine; and processing the input data to generate verified performance data, the processing including determining validity of the input data and performing at least one calculation on the input data, which is valid, to generate the verified performance data. The method further includes generating a collection of stored data in a database based on at least one of the input data and the verified performance data.
    Type: Application
    Filed: January 4, 2002
    Publication date: August 28, 2003
    Inventors: Gordon J. Follin, Eric J. Kauffman
  • Publication number: 20030105544
    Abstract: A system and method are provided for monitoring the operation of a plurality of turbines in respective operating locations. The method includes inputting operation data from each of the turbines and processing the operation data to generate secondary operation data. Further, the method also includes generating at least one report based on the secondary operation data.
    Type: Application
    Filed: November 30, 2001
    Publication date: June 5, 2003
    Inventors: Eric J. Kauffman, Richard J. Rucigay, Troy P. Christensen
  • Patent number: 6288338
    Abstract: An electrical bus isolation system includes a pair of bus bar supporting members, each of which includes a first substantially flat surface portion configured to retain a first bus bar, and second and third substantially flat surface portions each disposed on opposite sides of the first surface portion, and defining an offset in height from the first surface portion. The second and third surface portions are configured to retain opposite lateral sides of a second bus bar when the pair of supporting members are operatively engaged, with corresponding second and third surface portions facing each other such that the first bus bar is retained in a fixed position relative to the second bus bar in a parallel spaced relationship thereto and at a distance determined by the offset in height. An air gap between the bus bars electrically isolates the bus bars and prevents corona discharge between the bus bars.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: September 11, 2001
    Assignee: General Electric Company
    Inventors: Eric J. Kauffman, Paul S. Pate, Andrew C. Stevenson
  • Patent number: 6133533
    Abstract: An electrical bus isolation system includes a pair of bus bar supporting members, each of which includes a first substantially flat surface portion configured to retain a first bus bar, and second and third substantially flat surface portions each disposed on opposite sides of the first surface portion, and defining an offset in height from the first surface portion. The second and third surface portions are configured to retain opposite lateral sides of a second bus bar when the pair of supporting members are operatively engaged, with corresponding second and third surface portions facing each other such that the first bus bar is retained in a fixed position relative to the second bus bar in a parallel spaced relationship thereto and at a distance determined by the offset in height. An air gap between the bus bars electrically isolates the bus bars and prevents corona discharge between the bus bars.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: October 17, 2000
    Assignee: General Electric Company
    Inventors: Eric J. Kauffman, Paul S. Pate, Andrew C. Stevenson