Patents by Inventor Eric J. Panken

Eric J. Panken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115864
    Abstract: Techniques related to classifying a posture state of a living body are disclosed. One aspect relates to sensing at least one signal indicative of a posture state of a living body. Posture state detection logic classifies the living body as being in a posture state based on the at least one signal, wherein this classification may take into account at least one of posture and activity state of the living body. The posture state detection logic further determines whether the living body is classified in the posture state for at least a predetermined period of time. Response logic is described that initiates a response as a result of the body being classified in the posture state only after the living body has maintained the classified posture state for at least the predetermined period of time. This response may involve a change in therapy, such as neurostimulation therapy, that is delivered to the living body.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Dennis M. Skelton, Jon P. Davis, Eric J. Panken
  • Publication number: 20230364425
    Abstract: Processing circuitry of a system configured to determine a patient state based on sensed signals including posture and activity information and control delivery of electrical stimulation therapy to the patient via electrodes implanted proximal to target tissue of the patient. The sensed signals also include impedance measurement, and other bioelectrical signals, where sensing is interleaved with the electrical stimulation therapy. Responsive to determining the patient state, select an action, wherein the selected action comprises one or more of: store collected information, upload the collected information to an external computing device, and output an electronic signal comprising an alert.
    Type: Application
    Filed: April 21, 2023
    Publication date: November 16, 2023
    Inventors: Hank T. Bink, Erik J. Peterson, Jiashu Li, Vinod Sharma, Juan G. Hincapie, Eric J. Panken, Leonid M. Litvak, David A. Dinsmoor, Todd D. Zenisek, Andrew L. Schmeling, Andrew J. Cleland
  • Publication number: 20230364426
    Abstract: Processing circuitry for a medical system configured to determine posture and activity information of a patient and sense bioelectrical signals as well as receive information about the environment of the patient. The processing circuitry is configured to determine respiration activity of the patient based on the sensed signals and determine a degree of distress of the patient based on the sensed signals and the determined respiration activity. Responsive to determining the degree of distress, the processing circuitry is configured to output a command signal, which may adjust the output of stimulation circuitry configured to deliver electrical stimulation to a patient via a set of electrodes implanted proximal target tissue of the patient, upload the received information, cause the communication circuitry to send an electronic message comprising a notification of the degree of distress of the patient or take other actions.
    Type: Application
    Filed: April 21, 2023
    Publication date: November 16, 2023
    Inventors: Juan G. Hincapie, Eric J. Panken, Leonid M. Litvak, David A. Dinsmoor, Todd D. Zenisek, Andrew L. Schmeling, Andrew J. Cleland
  • Publication number: 20230364427
    Abstract: Processing circuitry for a medical system configured to sense bioelectrical signals and determine posture and activity information as well as information about the environment of the patient. The processing circuitry is also configured to control stimulation generation circuitry to deliver the electrical stimulation therapy, and interleaved with the electrical stimulation therapy, control the stimulation generation circuitry to output an impedance measurement signal. The processing circuitry is further configured to determine respiration of the patient based on the impedance. Responsive to determining the respiration of the patient, the processing circuitry may then determine a patient state based on the determined respiration, and the posture and activity information of the patient.
    Type: Application
    Filed: April 21, 2023
    Publication date: November 16, 2023
    Inventors: Hank T. Bink, Erik J. Peterson, Jiashu Li, Vinod Sharma, Juan G. Hincapie, Eric J. Panken, Leonid M. Litvak, David A. Dinsmoor, Todd D. Zenisek, Andrew L. Schmeling, Andrew J. Cleland
  • Publication number: 20230310841
    Abstract: Techniques are disclosed for defining a homeostatic window for controlling delivery of electrical stimulation therapy to a patient. In one example, a method includes generating and delivering electrical stimulation therapy to tissue of a patient via electrodes. Further, the method includes adjusting a level of a parameter of the electrical stimulation therapy such that a signal of the patient is not less than a lower bound and not greater than an upper bound. The lower bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce one or more symptoms of a disease while the patient was receiving medication for reduction of the one or more symptoms. Further, the upper bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce the one or more symptoms when the patient was not receiving the medication.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 5, 2023
    Inventors: Scott R. Stanslaski, Thomas Adamski, Duane L. Bourget, Timothy J. Denison, Benjamin P. Isaacson, Eric J. Panken, Jeffrey Herron
  • Publication number: 20230264029
    Abstract: Techniques related to classifying a posture state of a living body are disclosed. One aspect relates to sensing at least one signal indicative of a posture state of a living body. Posture state detection logic classifies the living body as being in a posture state based on the at least one signal, wherein this classification may take into account at least one of posture and activity state of the living body. The posture state detection logic further determines whether the living body is classified in the posture state for at least a predetermined period of time. Response logic is described that initiates a response as a result of the body being classified in the posture state only after the living body has maintained the classified posture state for at least the predetermined period of time. This response may involve a change in therapy, such as neurostimulation therapy, that is delivered to the living body.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 24, 2023
    Inventors: Dennis M. Skelton, Jon P. Davis, Eric J. Panken
  • Publication number: 20230263444
    Abstract: Systems and methods for programming an implantable medical device comprising a simulated environment with at least one lead having a plurality of electrodes, computing hardware of at least one processor and a memory operably coupled to the at least one processor, and instructions that, when executed on the computing hardware, cause the computing hardware to implement a training sub-system configured to conduct a brain sense survey using the simulated environment, develop at least one machine learning model based on the brain sense survey, apply the at least one machine learning model to in-vivo patient data to determine at least one predicted electrode from the plurality of electrodes relative to an oscillatory source, visualize the at least one predicted electrode, and program a medical device based on the at least one predicted electrode.
    Type: Application
    Filed: January 26, 2023
    Publication date: August 24, 2023
    Inventors: Michelle A. Case, Eric J. Panken, Rene A. Molina, Paula A.E. Dassbach Green, Abbey Beuning Holt Becker
  • Publication number: 20230241400
    Abstract: Devices, systems, and techniques are described for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 3, 2023
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Patent number: 11672989
    Abstract: Techniques related to classifying a posture state of a living body are disclosed. One aspect relates to sensing at least one signal indicative of a posture state of a living body. Posture state detection logic classifies the living body as being in a posture state based on the at least one signal, wherein this classification may take into account at least one of posture and activity state of the living body. The posture state detection logic further determines whether the living body is classified in the posture state for at least a predetermined period of time. Response logic is described that initiates a response as a result of the body being classified in the posture state only after the living body has maintained the classified posture state for at least the predetermined period of time. This response may involve a change in therapy, such as neurostimulation therapy, that is delivered to the living body.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: June 13, 2023
    Assignee: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Jon P. Davis, Eric J. Panken
  • Patent number: 11666750
    Abstract: Techniques are disclosed for defining a homeostatic window for controlling delivery of electrical stimulation therapy to a patient. In one example, a method includes generating and delivering electrical stimulation therapy to tissue of a patient via electrodes. Further, the method includes adjusting a level of a parameter of the electrical stimulation therapy such that a signal of the patient is not less than a lower bound and not greater than an upper bound. The lower bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce one or more symptoms of a disease while the patient was receiving medication for reduction of the one or more symptoms. Further, the upper bound is determined to be the magnitude of the signal while receiving electrical stimulation therapy sufficient to reduce the one or more symptoms when the patient was not receiving the medication.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Medtronic, Inc.
    Inventors: Scott R. Stanslaski, Thomas Adamski, Duane L. Bourget, Timothy J. Denison, Benjamin P. Isaacson, Eric J. Panken, Jeffrey Herron
  • Patent number: 11648398
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using an efficacy map comprising a plurality of voxels that are each assigned a value. In some examples, the efficacy map is selected from a plurality of stored efficacy maps based on a patient condition, one or more patient symptoms, or both the patient condition and one or more patient symptoms. In addition, in some examples, voxels of the efficacy map are assigned respective values that are associated with a clinical rating scale.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 16, 2023
    Assignee: Medtronic, Inc.
    Inventors: Ashutosh Chaturvedi, Siddharth Dani, Timothy J. Denison, William F. Kaemmerer, Shahram Malekkhosravi, Eric J. Panken, Brandon Zingsheim
  • Patent number: 11628302
    Abstract: A medical device may receive sensor data from sensing sources, and determine confidence levels for sensor data received from each of the plurality of sensing sources. Each of the confidence levels of the sensor data from each of the sensing sources is a measure of accuracy of the sensor data received from respective sensing sources. The medical device may also determine one or more therapy parameter values based on the determined confidence levels, and cause delivery of therapy based on the determined one or more therapy parameter values.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: April 18, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: William F. Kaemmerer, Duane L. Bourget, Timothy J. Denison, Eric J. Panken, Scott R. Stanslaski
  • Patent number: 11623096
    Abstract: Devices, systems, and techniques are described for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: April 11, 2023
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Publication number: 20230092658
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system is configured to receive information representing a plurality of signals sensed from a tissue of a patient via a plurality of electrode combinations, wherein the plurality of electrode combinations comprises different electrode combinations comprising electrodes disposed at different positions of the lead implanted in the patient, determine one or more features from the information representing the plurality of signals, and compare the one or more features to a plurality of templates, each template of the plurality of templates representing respective locations of a signal source within the tissue. The system may then determine, based on the comparison of the one or more features to the plurality of templates, an estimated location of the signal source with respect to the lead.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 23, 2023
    Inventors: Jadin C. Jackson, Eric J. Panken, Michelle A. Case, Rene A. Molina, Abbey Beuning Holt Becker, Christopher L. Pulliam
  • Patent number: 11571576
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system may assist a clinician in identifying one or more electrode combinations for sensing a brain signal. In another example, a user interface may display brain signal information and values of a stimulation parameter at least partially defining electrical stimulation delivered to a patient when the brain signal information was sensed.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: February 7, 2023
    Assignee: Medtronic, Inc.
    Inventors: Evan D. Schnell, Scott R. Stanslaski, Ilan D. Gordon, Steven M. Goetz, Hijaz M. Haris, Eric J. Panken, Timothy R. Abraham, Thomas L. Chouinard, Susan Heilman Kilbane, Karan Chitkara, Christopher M. Arnett, Alicia W. Thompson, Kevin C. Johnson, Ankush Thakur, Lukas Valine, Christopher L. Pulliam, Brady N. Fetting, Rucha Gokul G. Samant, Andrew H. Houchins, Caleb C. Zarns
  • Publication number: 20220287646
    Abstract: A method for artifact suppression in a sensed signal includes receiving the sensed signal sensed in a brain of a patient, wherein the sensed signal includes a neural signal and artifacts from a cardiac signal, decomposing the sensed signal into a plurality of components of the sensed signal, determining a first group of components, from the plurality of components, that are correlated with one another, determining an estimate of the cardiac signal based on the first group of components, wherein the estimate of the cardiac signal includes the cardiac signal and components of the neural signal, and generating a denoised neural signal based on the estimate of the cardiac signal and a second group of components of the plurality of components of the sensed signal, wherein the cardiac signal is suppressed in the denoised neural signal, and wherein the second group of components excludes the first group of components.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Inventors: Claudia Sannelli, Eric J. Panken, Mirko de Melis, Gaetano Leogrande, Scott R. Stanslaski
  • Publication number: 20220265209
    Abstract: A system for providing stimulation to a patient includes one or more processors implemented in circuitry and one or more accelerometers configured to generate one or more accelerometer signals. The one or more processors are configured to determine accelerometer information for a medical device associated with the patient based on the one or more accelerometer signals and convert the accelerometer information into frequency domain coefficients. The one or more processors are further configured to determine an activity level for the patient based on the frequency domain coefficients and determine one or more stimulation parameters based on the activity level. The one or more processors are further configured to output electrical stimulation to the patient based on the one or more stimulation parameters.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 25, 2022
    Inventors: Eric J. Panken, Mandla Shongwe
  • Patent number: 11376434
    Abstract: Devices, systems, and techniques are configured for identifying stimulation parameter values based on electrical stimulation that induces dyskinesia for the patient. For example, a method may include controlling, by processing circuitry, a medical device to deliver electrical stimulation to a portion of a brain of a patient, receiving, by the processing circuitry, information representative of an electrical signal sensed from the brain after delivery of the electrical stimulation, determining, by the processing circuitry and from the information representative of the electrical signal, a peak in a spectral power of the electrical signal at a second frequency lower than a first frequency of the electrical stimulation, and responsive to determining the peak in the spectral power of the electrical signal at the second frequency, performing, by the processing circuitry, an action.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: July 5, 2022
    Assignee: Medtronic, Inc.
    Inventors: Rene A. Molina, Scott R. Stanslaski, Jadin C. Jackson, Christopher L. Pulliam, Eric J. Panken, Michelle A. Case, Abbey Beuning Holt Becker
  • Patent number: 11318296
    Abstract: Techniques are disclosed to automate determination of therapy parameter values for adaptive deep brain stimulation (aDBS). A medical device may determine differences in power values between a present and a previous power value. Based on the difference being greater than or equal to a threshold value, the medical device may iteratively adjust a present therapy parameter value until the difference in the power values between a present and a previous power value is less than the threshold value.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: May 3, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Yizi Xiao, Eric J. Panken, Scott R. Stanslaski, Jadin C. Jackson, Christopher Pulliam
  • Publication number: 20220062640
    Abstract: Devices, systems, and techniques for identifying electrodes closest to a target region of tissue are described. In one example, a device includes sensing circuitry configured to sense electrical signals from a plurality of electrode combinations. Processing circuitry identifies a first electrode combination of a first subset of electrode combinations. Each electrode combination of the first subset of electrode combination includes electrodes located at different axial positions along a length of the medical lead. The processing circuitry identifies a second electrode combination of a second subset of electrode combinations. Each electrode combination of the second subset of electrode combinations includes electrodes located at a same axial position and different circumferential positions around a perimeter of the medical lead. The processing circuitry then determines a third electrode combination and controls delivery of electrical stimulation via the third electrode combination.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 3, 2022
    Inventors: Robert S. Raike, Jadin C. Jackson, Scott R. Stanslaski, Eric J. Panken, Christopher L. Pulliam, Timothy R. Abraham, Michelle A. Case, Paula Andrea Elma Dassbach Green, Abbey Beuning Holt Becker, Rene A. Molina