Patents by Inventor Eric M. Perez

Eric M. Perez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10782033
    Abstract: A heating control system that includes a heating unit with a constant burner and a pulsed burner. The constant burner is configured to remain active during operation. The pulsed burner is configured to toggle between an active mode and an inactive mode. The heating control system further includes a memory operable to store a temperature map that maps temperatures to percentages of a period that the pulsed burner is active and a microprocessor operably coupled to the heating unit and the memory. The microprocessor is configured to transmit a first electrical signal to activate the constant burner, obtain a temperature set point, determine the percentage of the period that the pulsed burner is active using the temperature set point and the temperature map, and transmit a second electrical signal to toggle the pulsed burner based on the determination of the percentage of the period that the pulsed burner is active.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: September 22, 2020
    Assignee: Lennox Industries Inc.
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Patent number: 10775053
    Abstract: A heating control method includes determining a first speed for an air circulation fan that corresponds with a temperature set point using a temperature map that maps temperatures to speeds of the air circulation fan and operating the air circulation fan at the first speed and a heating unit in a first configuration with at least one active burner from a plurality of burners where less than all of the burners are active when the heating unit is in the first configuration. The method further includes measuring a first temperature while operating the air circulation fan at the first speed, determining a temperature difference between the first temperature and the temperature set point, comparing the temperature difference to a temperature difference threshold, and updating the temperature map to map the first speed to the first temperature when the temperature difference is greater than the temperature difference threshold.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: September 15, 2020
    Assignee: Lennox Industries Inc.
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Patent number: 10352572
    Abstract: A heating control device including input/output ports, a memory operable to store smoke output thresholds, and a microprocessor. The microprocessor is configured to transmit a first electrical signal to operate an air circulation fan at a first speed and a heating unit in a first configuration to burn a lubricant at a first temperature where less than all of the burners are active. The microprocessor is further configured to obtain a smoke output measurement for the first temperature, compare the smoke output measurement to the smoke output threshold, and transmit a second electrical signal to transition the air circulation fan to a second speed to burn the lubricant at a second temperature that is greater than the first temperature when the smoke output measurement is less than the smoke output threshold and is less than the first temperature when the smoke output measurement is greater than the smoke output threshold.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: July 16, 2019
    Assignee: Lennox Industries, Inc.
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Patent number: 10295211
    Abstract: A heating system comprising an air circulation fan, a heating unit, a memory that is operable to store a temperature map, and a microprocessor. The microprocessor is configured to operate the air circulation fan at a first speed and the heating unit in a first configuration. When the heating unit is in the first configuration, the heating unit is configured to achieve a first temperature and such that less than all of the burners are active. The microprocessor is also configured to receive a temperature set point and to determine a second speed for the air circulation fan using the temperature set point and the temperature map in response to receiving the temperature set point. Further, the microprocessor is configured to transition the air circulation fan from the first speed to the second speed in response to determining the second speed.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 21, 2019
    Assignee: Lennox Industries Inc.
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Patent number: 10281165
    Abstract: A heating control system including an air circulation fan, a heating unit, a memory, and a microprocessor. The microprocessor is configured to operate the air circulation fan at a first speed and the heating unit in a first configuration where less than all of the burners are active. The microprocessor is further configured to determine a first temperature difference, compare the first temperature difference to a first temperature difference threshold, and transition the air circulation fan from the first speed to a second speed when the first temperature difference is less than the first temperature difference threshold. The microprocessor is further configured to determine a second temperature difference, compare the second temperature difference to a second temperature difference threshold, and transition the air circulation fan from the second speed to a third speed when the second temperature difference is less than the second temperature difference threshold.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 7, 2019
    Assignee: Lennox Industries Inc.
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Patent number: 10161650
    Abstract: Retrofit assemblies and an HVAC unit including a retrofit assembly are disclosed herein. In one embodiment, the retrofit assembly includes: (1) a base plate, that is mountable to a face of a motor speed driver (MSD), having an attachment area, (2) a standoff bracket that is mountable to the attachment area of the base plate and having a configuration that secures the MSD in a position relative to an interior wall of the HVAC system and provides clearance between the interior wall of the HVAC system and the MSD such that wires can be routed between the MSD and the interior wall and (3) a control interface, electrically connectable between the MSD and a thermostat of the HVAC system, configured to differentiate thermostat calls from the thermostat and translate the thermostat calls to coordinate blower speeds for the blower motor via the MSD.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: December 25, 2018
    Assignee: Lennox Industries Inc.
    Inventors: Walter Davis, II, Eric M. Perez, Eric Chanthalangsy
  • Patent number: 9964313
    Abstract: A heating control system including an air circulation fan, a heating unit, a memory, and a microprocessor. The microprocessor is configured to operate the air circulation fan at a first speed and the heating unit in a first configuration to achieve a first temperature rise where less than all of the burners are active. The microprocessor is further configured to compare the first temperature rise to a first temperature rise threshold and transition the air circulation fan to a second speed to achieve a second temperature rise when the first temperature rise is less than the first temperature rise threshold. The microprocessor is further configured to compare the second temperature rise to a second temperature rise threshold and transition the air circulation fan to a third speed when the second temperature rise is greater than the second temperature rise threshold.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 8, 2018
    Assignee: Lennox Industries Inc.
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Patent number: 9945567
    Abstract: A heating control device comprising input/output ports, a memory, and a microprocessor. The microprocessor is configured to transmit a first electrical signal to operate an air circulation fan at a first speed and a heating unit in a first configuration to achieve a first temperature rise where less than all of the burners are active. The microprocessor is further configured to obtain a return air temperature, obtain a room air temperature, and determine a temperature difference between the return air temperature and the room air temperature. The microprocessor is further configured to compare the temperature difference to a temperature rise threshold and transmit a second electrical signal to transition the air circulation fan from the first speed to a second speed to achieve a second temperature rise that is less than the first temperature rise when the temperature difference is greater than the temperature rise threshold.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: April 17, 2018
    Assignee: Lennox Industries Inc.
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Publication number: 20170211820
    Abstract: A heating control system including an air circulation fan, a heating unit, a memory, and a microprocessor. The microprocessor is configured to operate the air circulation fan at a first speed and the heating unit in a first configuration to achieve a first temperature rise where less than all of the burners are active. The microprocessor is further configured to compare the first temperature rise to a first temperature rise threshold and transition the air circulation fan to a second speed to achieve a second temperature rise when the first temperature rise is less than the first temperature rise threshold. The microprocessor is further configured to compare the second temperature rise to a second temperature rise threshold and transition the air circulation fan to a third speed when the second temperature rise is greater than the second temperature rise threshold.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Publication number: 20170211822
    Abstract: A heating control system that includes a heating unit with a constant burner and a pulsed burner. The constant burner is configured to remain active during operation. The pulsed burner is configured to toggle between an active mode and an inactive mode. The heating control system further includes a memory operable to store a temperature map that maps temperatures to percentages of a period that the pulsed burner is active and a microprocessor operably coupled to the heating unit and the memory. The microprocessor is configured to transmit a first electrical signal to activate the constant burner, obtain a temperature set point, determine the percentage of the period that the pulsed burner is active using the temperature set point and the temperature map, and transmit a second electrical signal to toggle the pulsed burner based on the determination of the percentage of the period that the pulsed burner is active.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Publication number: 20170211824
    Abstract: A heating control device comprising input/output ports, a memory, and a microprocessor. The microprocessor is configured to transmit a first electrical signal to operate an air circulation fan at a first speed and a heating unit in a first configuration to achieve a first temperature rise where less than all of the burners are active. The microprocessor is further configured to obtain a return air temperature, obtain a room air temperature, and determine a temperature difference between the return air temperature and the room air temperature. The microprocessor is further configured to compare the temperature difference to a temperature rise threshold and transmit a second electrical signal to transition the air circulation fan from the first speed to a second speed to achieve a second temperature rise that is less than the first temperature rise when the temperature difference is greater than the temperature rise threshold.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Publication number: 20170211835
    Abstract: A heating control system including an air circulation fan, a heating unit, a memory, and a microprocessor. The microprocessor is configured to operate the air circulation fan at a first speed and the heating unit in a first configuration where less than all of the burners are active. The microprocessor is further configured to determine a first temperature difference, compare the first temperature difference to a first temperature difference threshold, and transition the air circulation fan from the first speed to a second speed when the first temperature difference is less than the first temperature difference threshold. The microprocessor is further configured to determine a second temperature difference, compare the second temperature difference to a second temperature difference threshold, and transition the air circulation fan from the second speed to a third speed when the second temperature difference is less than the second temperature difference threshold.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Publication number: 20170211836
    Abstract: A heating control method includes determining a first speed for an air circulation fan that corresponds with a temperature set point using a temperature map that maps temperatures to speeds of the air circulation fan and operating the air circulation fan at the first speed and a heating unit in a first configuration with at least one active burner from a plurality of burners where less than all of the burners are active when the heating unit is in the first configuration. The method further includes measuring a first temperature while operating the air circulation fan at the first speed, determining a temperature difference between the first temperature and the temperature set point, comparing the temperature difference to a temperature difference threshold, and updating the temperature map to map the first speed to the first temperature when the temperature difference is greater than the temperature difference threshold.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Publication number: 20170211834
    Abstract: A heating system comprising an air circulation fan, a heating unit, a memory that is operable to store a temperature map, and a microprocessor. The microprocessor is configured to operate the air circulation fan at a first speed and the heating unit in a first configuration. When the heating unit is in the first configuration, the heating unit is configured to achieve a first temperature and such that less than all of the burners are active. The microprocessor is also configured to receive a temperature set point and to determine a second speed for the air circulation fan using the temperature set point and the temperature map in response to receiving the temperature set point. Further, the microprocessor is configured to transition the air circulation fan from the first speed to the second speed in response to determining the second speed.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Publication number: 20170211823
    Abstract: A heating control device including input/output ports, a memory operable to store smoke output thresholds, and a microprocessor. The microprocessor is configured to transmit a first electrical signal to operate an air circulation fan at a first speed and a heating unit in a first configuration to burn a lubricant at a first temperature where less than all of the burners are active. The microprocessor is further configured to obtain a smoke output measurement for the first temperature, compare the smoke output measurement to the smoke output threshold, and transmit a second electrical signal to transition the air circulation fan to a second speed to burn the lubricant at a second temperature that is greater than the first temperature when the smoke output measurement is less than the smoke output threshold and is less than the first temperature when the smoke output measurement is greater than the smoke output threshold.
    Type: Application
    Filed: January 26, 2016
    Publication date: July 27, 2017
    Inventors: Eric M. Perez, Mark G. Beste, Steven Schneider
  • Patent number: 9677797
    Abstract: An inverter controller, a method of operating a controller and a field-installable kit. In one embodiment, the controller includes: (1) a thermostat interface configured to receive conventional thermostat signals providing for a ventilation mode, first- and second-stage cooling modes and at least one heating mode and provide relay control signals for an inverter forward start relay, first- and second-stage cooling speed select relays and at least one heating relay and (2) an inverter controller coupled to the thermostat interface and configured to receive the relay control signals and provide an inverter forward start signal, an inverter high speed set, an inverter medium speed set and an inverter ventilation speed set.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: June 13, 2017
    Assignee: Lennox Industries Inc.
    Inventors: Harold Gene Havard, Jr., Eric M. Perez, Terry D. Jewell, Der-Kai Hung
  • Publication number: 20160348939
    Abstract: Retrofit assemblies and an HVAC unit including a retrofit assembly are disclosed herein. In one embodiment, the retrofit assembly includes: (1) a base plate, that is mountable to a face of a motor speed driver (MSD), having an attachment area, (2) a standoff bracket that is mountable to the attachment area of the base plate and having a configuration that secures the MSD in a position relative to an interior wall of the HVAC system and provides clearance between the interior wall of the HVAC system and the MSD such that wires can be routed between the MSD and the interior wall and (3) a control interface, electrically connectable between the MSD and a thermostat of the HVAC system, configured to differentiate thermostat calls from the thermostat and translate the thermostat calls to coordinate blower speeds for the blower motor via the MSD.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 1, 2016
    Inventors: Walter Davis, II, Eric M. Perez, Eric Chanthalangsy
  • Publication number: 20130153197
    Abstract: An inverter controller, a method of operating a controller and a field-installable kit. In one embodiment, the controller includes: (1) a thermostat interface configured to receive conventional thermostat signals providing for a ventilation mode, first- and second-stage cooling modes and at least one heating mode and provide relay control signals for an inverter forward start relay, first- and second-stage cooling speed select relays and at least one heating relay and (2) an inverter controller coupled to the thermostat interface and configured to receive the relay control signals and provide an inverter forward start signal, an inverter high speed set, an inverter medium speed set and an inverter ventilation speed set.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Harold Gene Havard, JR., Eric M. Perez, Terry D. Jewell, Der-Kai Hung
  • Patent number: 6945320
    Abstract: A tubular heat exchanger has at least one pair of dimples which are extruded into at least one tube of the heat exchanger by deforming the tube wall inwardly. The dimples of each pair are in generally facing relationship, but are offset with respect to each other along a longitudinal axis of the tube, which slows down the flow of flue gas in the tube when the heat exchanger is in operation and increases the turbulence of the gas, thereby enhancing the transfer of heat from the flue gas to air flowing across the outer surfaces of the heat exchanger. The offset design allows each dimple to protrude beyond the centerline of the tube, which alters the direction of the flue gas flowing in the tube.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: September 20, 2005
    Assignee: Lennox Manufacturing Inc.
    Inventors: Harold Gene Harvard, Jr., Steven Schneider, Eric M. Perez