Patents by Inventor Eric P. Clyde

Eric P. Clyde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9429540
    Abstract: An exhaust sensor comprises a sensing electrode and a reference electrode each in contact with an electrolyte. At least one of the sensing electrode and the reference electrode are formed by depositing an electrode precursor material on an electrolyte precursor material and sintering the combination at a sufficient temperature for a sufficient time to achieve densification of the electrolyte, wherein the electrode precursor material comprises an alkali salt. Electrode patterns having enhanced perimeter ratios are also disclosed. The resulting exhaust sensor is capable of providing a usable output at a reduced operating temperature.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: August 30, 2016
    Assignee: Delphi Technologies, Inc.
    Inventors: Eric P. Clyde, Walter T. Symons, Kaius K. Polikarpus, James D. Ward, Marsha E. Nottingham
  • Publication number: 20160116372
    Abstract: A sensor element includes a substrate (10) having a coating (31) on a portion of the substrate (10). The coating (31) is applied to the substrate (10) by dipping the portion of the substrate (10) into a slurry which includes a pulverized mineral and water, extracting the substrate (10) from the slurry in a direction along an axis, drying the coated substrate (10), and firing the coated substrate (10) so as to promote densification of the mineral and adhesion of the mineral to the substrate (10). The coating (31) after firing has a minimum thickness of about 100 microns at every location around the periphery of a cross section through the substrate (10) taken in a plane normal to the axis. A method for making a coated sensor element is also disclosed.
    Type: Application
    Filed: November 2, 2015
    Publication date: April 28, 2016
    Inventors: MICHAEL J. DAY, RICHARD C. KUISELL, WALTER T. SYMONS, CHARLES S. KING, ERIC P. CLYDE
  • Publication number: 20150168261
    Abstract: A sensor element includes a substrate having a coating on a portion of the substrate. The coating is applied to the substrate by dipping the portion of the substrate into a slurry which includes a pulverized mineral and water, extracting the substrate from the slurry in a direction along an axis, drying the coated substrate, and firing the coated substrate so as to promote densification of the mineral and adhesion of the mineral to the substrate. The coating after firing has a minimum thickness of about 100 microns at every location around the periphery of a cross section through the substrate taken in a plane normal to the axis. A method for making a coated sensor element is also disclosed.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 18, 2015
    Inventors: MICHAEL J. DAY, RICHARD C. KUISELL, WALTER T. SYMONS, CHARLES S. KING, ERIC P. CLYDE
  • Publication number: 20130270257
    Abstract: A planar device includes a heating circuit that is disposed between ceramic layers in a planar device and co-fired with the ceramic. The heating circuit material and geometry are controlled so as to provide a targeted resistance characteristic as a function of temperature that allows interchangeability in an engine management system that was designed for a heater circuit based on a material system that cannot be co-fired with the planar device.
    Type: Application
    Filed: June 6, 2011
    Publication date: October 17, 2013
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Debabrata Sarkar, Walter Thomas Symons, Eric P. Clyde, David E. Lemaster, Gerardo I. Hernandez
  • Publication number: 20130264203
    Abstract: A planar device includes a heating circuit that is disposed between ceramic layers and co-fired with the ceramic. The heating circuit comprises palladium, and the co-firing of the palladium and ceramic is performed in an oxidizing atmosphere. The formation of defects in the planar device that would otherwise be induced as a result of the palladium oxidizing during the co-firing process is prevented by control of the firing profile, by the geometry of the pattern of the heating circuit, and/or by modifying the palladium to reduce its tendency to oxidize.
    Type: Application
    Filed: June 4, 2011
    Publication date: October 10, 2013
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Oscar Gamboa, Walter T. Symons, Eric P. Clyde, Kaius K. Polikarpus, Debabrata Sarkar
  • Publication number: 20130092538
    Abstract: An exhaust sensor comprises a sensing electrode and a reference electrode each in contact with an electrolyte. At least one of the sensing electrode and the reference electrode are formed by depositing an electrode precursor material on an electrolyte precursor material and sintering the combination at a sufficient temperature for a sufficient time to achieve densification of the electrolyte, wherein the electrode precursor material comprises an alkali salt. Electrode patterns having enhanced perimeter ratios are also disclosed. The resulting exhaust sensor is capable of providing a usable output at a reduced operating temperature.
    Type: Application
    Filed: June 3, 2011
    Publication date: April 18, 2013
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Eric P. Clyde, Walter T. Symons, Kaius K. Polikarpus, James D. Ward, Marsha E. Nottingham
  • Patent number: 8211281
    Abstract: In one embodiment, a protective coating for an electrode of a sensor is described, the protective coating comprising an annealed catalyst, said annealed catalyst comprising at least one metal that has been subjected to thermal energy that is at least equivalent to or greater than that received from calcining the at least one metal for 24 hours at a temperature of 930 degrees C in air. In another embodiment, the annealed catalyst will comprise at least one metal that has been subjected to thermal energy that is equal to or less than that received from calcining the at least one metal for 24 hours at 1030 degrees C in air. In one exemplary embodiment, the annealed catalyst will comprise at least one metal that has been subjected to thermal energy that is equal to that received from calcining the at least one metal for 24 hours at 980 degrees C in air.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: July 3, 2012
    Assignee: Delphi Technologies, Inc.
    Inventors: Carlos A. Valdes, Marsha Nottingham, Earl W. Lankheet, Eric P. Clyde
  • Publication number: 20110120863
    Abstract: An exhaust sensor includes a first sheet of ceramic that is perforated with a vent orifice and, a second sheet of ceramic that is laminated to the first sheet. A palladium circuit trace is positioned between the first sheet and the second sheet of ceramic and a fugitive ink is printed on one of the sheets that is in communication with the vent orifice and the palladium. The fugitive ink volatilizes during a firing process and created a void space that is occupied by a palladium oxide that forms at temperatures around 625-900C.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Inventors: Marsha E. Nottingham, Oscar Gamboa, Eric P. Clyde, Jennifer S. Johnson
  • Publication number: 20080135407
    Abstract: In one embodiment, a protective coating for an electrode of a sensor is described, the protective coating comprising an annealed catalyst, said annealed catalyst comprising at least one metal that has been subjected to thermal energy that is at least equivalent to or greater than that received from calcining the at least one metal for 24 hours at a temperature of 930 degrees C. in air. In another embodiment, the annealed catalyst will comprise at least one metal that has been subjected to thermal energy that is equal to or less than that received from calcining the at least one metal for 24 hours at 1030 degrees C. in air. In one exemplary embodiment, the annealed catalyst will comprise at least one metal that has been subjected to thermal energy that is equal to that received from calcining the at least one metal for 24 hours at 980 degrees C. in air.
    Type: Application
    Filed: October 10, 2007
    Publication date: June 12, 2008
    Inventors: Carlos A. Valdes, Marsha Nottingham, Earl W. Lankheet, Eric P. Clyde
  • Publication number: 20080023329
    Abstract: A conductive shield for routing mobile ions to contact pad in accordance with an exemplary embodiment is provided. The conductive shield includes a first conductive path electrically coupled to the contact pad. The conductive shield further includes a second conductive path electrically coupled to first and second locations on the first conductive path such that when a physical break occurs in the first conductive path between the first and second locations, mobile ions in the first conductive path are still routed to the contact pad through the second conductive path.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Inventors: Lora B. Thrun, Eric P. Clyde, Walter T. Symons, Gene A. Mausolf
  • Patent number: 7097875
    Abstract: In one embodiment, a method of making a sensor comprises: forming a slurry comprising a metal oxide, a binder, an acetate, and a reducing material, applying the slurry to at least a portion of a sensing element comprising two electrodes with an electrolyte disposed therebetween, and calcining the slurry to form a protective coating. In one embodiment, a gas sensor, comprises: a sensing element comprising a sensing electrode and a reference electrode having an electrolyte disposed therebetween, and a protective coating disposed over the sensing electrode, wherein the protective coating comprises aluminum oxide, an alpha alumina and about 2 wt % to about 15 wt % solid solution, based upon the total weight of the protective coating.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: August 29, 2006
    Assignee: Delphi Technologies, INC
    Inventors: Eric P. Clyde, Richard E. Fouts, Richard F. Beckmeyer, William J. LaBarge
  • Publication number: 20040117974
    Abstract: In one embodiment, a method of making a sensor comprises: forming a slurry comprising a metal oxide, a binder, an acetate, and a reducing material, applying the slurry to at least a portion of a sensing element comprising two electrodes with an electrolyte disposed therebetween, and calcining the slurry to form a protective coating. In one embodiment, a gas sensor, comprises: a sensing element comprising a sensing electrode and a reference electrode having an electrolyte disposed therebetween, and a protective coating disposed over the sensing electrode, wherein the protective coating comprises aluminum oxide, an alpha alumina and about 2 wt % to about 15 wt % solid solution, based upon the total weight of the protective coating.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Inventors: Eric P. Clyde, Richard E. Fouts, Richard F. Beckmeyer, William J. LaBarge
  • Publication number: 20040011645
    Abstract: A gas sensor comprises a first electrode and a second electrode; and an electrolyte disposed between the first electrode and the second electrode. The electrolyte is shaped into a cylinder having an axial open end portion, an axial middle portion, and an axial closed end portion. The axial closed end portion has a uniform wall thickness equal to or less than about 1.5 millimeters. A radial transition in an interior region of the electrolyte between the middle and the closed end portions forms a shoulder. Processes for sensing exhaust gas generally includes disposing the gas sensor in an exhaust stream, contacting the closed end portion of the sensor with exhaust gas, and creating an electromotive force. The sensor activates quickly due to the close proximity to a rod heater and the low thermal mass resulting from the small inner diameter and thin wall section of the closed end portion.
    Type: Application
    Filed: July 22, 2002
    Publication date: January 22, 2004
    Inventors: Richard F. Beckmeyer, Kathryn M. McCauley, David K. Chen, Harold Adams, Eric P. Clyde
  • Publication number: 20030205468
    Abstract: A sensor and a method for making a sensor is disclosed. The method for making the sensor comprises: mixing a first metal oxide stabilized alumina with alpha alumina in a liquid to create a base slurry, mixing into said base slurry a second metal oxide stabilized alumina and a fugitive material to create a composition; applying said composition to at least a portion of a sensing element comprising two electrodes with an electrolyte disposed therebetween; and calcining said sensing element.
    Type: Application
    Filed: September 26, 2002
    Publication date: November 6, 2003
    Inventors: Ming-Cheng Wu, Eric P Clyde
  • Patent number: 6555159
    Abstract: A method for making a sensor is disclosed. The method comprises: disposing an electrolyte between a first side of sensing electrode and a first side of reference electrode, disposing a first side of a protective layer adjacent to said a second side of said sensing electrode, applying a mixture of a metal oxide, a fugitive material, and a solvent to a second side of the protective layer, and calcining the applied mixture to form said a protective coating on the second side of the protective layer.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: April 29, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Eric P. Clyde, Richard F. Beckmeyer, William J. Labarge, Marsha E. Nottingham
  • Publication number: 20030070921
    Abstract: Disclosed herein are electrodes, sensors, and methods for making and using the same. In one embodiment, the sensor comprises: a co-fired sensing electrode comprising the reaction product of about 50 wt % to about 95 wt % noble metal, about 0.5 wt % to about 15.0 wt % yttria-stabilized zirconia, and about 1 wt % to about 6 wt % yttria, based upon a total combined weight of the noble metal, yttria-stabilized zirconia, and yttria, a reference electrode, and a co-fired electrolyte disposed between and in ionic communication with the co-fired sensing electrode and the reference electrode.
    Type: Application
    Filed: October 11, 2002
    Publication date: April 17, 2003
    Inventors: Eric P. Clyde, Kailash C. Jain, Paul C. Kikuchi
  • Patent number: 6544405
    Abstract: An exhaust gas sensor element having an electrochemical cell, a protective material in fluid communication with the electrochemical cell, and a reactive inhibitive coating disposed over the protective material. The reactive inhibitive coating prevents the reaction of compounds with acids(e.g., phosphates) in the exhaust gas, which may form a dense glass layer on the outside of the gas sensor. The reactive inhibitive coating is either an alkaline earth oxide ethoxide, and/or carbonate that is deposited on the gas sensor to a thickness so as to preferably provide an excess of either the alkaline earth material.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: April 8, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Eric P. Clyde, Paul Kikuchi, Richard F. Beckmeyer, William J. LaBarge
  • Patent number: 6468407
    Abstract: A sensor is disclosed that comprises an electrolyte disposed between and in intimate contact with a sensing electrode and a reference electrode. A protective coating is disposed on the protective layer adjacent to the sensing electrode. The protective coating comprises a mixture of a metal oxide, a zeolite, and an alumina. A method for making the sensor is also disclosed.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: October 22, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Eric P. Clyde, Paul Kikuchi, Richard F. Beckmeyer, William J. LaBarge
  • Publication number: 20020112957
    Abstract: A sensor comprising an electrochemical cell (sensing electrode, reference electrode, and electrolyte disposed therebetween) has a protective silica coating at least on a side of the sensing electrode opposite the electrolyte. This protective silica coating can be an aerogel which is optionally also disposed on a side of the reference electrode opposite the electrolyte.
    Type: Application
    Filed: December 15, 2000
    Publication date: August 22, 2002
    Inventors: Eric P. Clyde, Paul Kikuchi, Richard F. Beckmeyer, William J. LaBarge
  • Publication number: 20020104765
    Abstract: An exhaust gas sensor element having an electrochemical cell, a protective material in fluid communication with the electrochemical cell, and a reactive inhibitive coating disposed over the protective material. The reactive inhibitive coating prevents the reaction of compounds with acids(e.g., phosphates) in the exhaust gas, which may form a dense glass layer on the outside of the gas sensor. The reactive inhibitive coating is either an alkaline earth oxide ethoxide, and/or carbonate that is deposited on the gas sensor to a thickness so as to preferably provide an excess of either the alkaline earth material.
    Type: Application
    Filed: December 15, 2000
    Publication date: August 8, 2002
    Inventors: Eric P. Clyde, Paul Kikuchi, Richard F. Beckmeyer, William J. LaBarge