Patents by Inventor Eric Schwoebel

Eric Schwoebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230287487
    Abstract: The disclosure provides various systems and methods for identifying individuals from one or more samples. In particular, improved systems and methods of analysis are provided for handling multiple contributors, as well as systems and methods that model not only individual error rates per locus but factor in amplification of errors induced through PCR cycles. In some embodiments, modeling of error rates can be applied in multi-contributor settings to more accurately establish real alleles from artifacts. Other aspects involve application of sequencing in error modeling. Further, methods are provided for determining the presence of common individual DNA profiles in one or more complex DNA mixtures and for deconvolution of multiple complex DNA mixtures into shared individual components. The methods of the disclosure do not require any prior knowledge of individual DNA profiles or contributors to the complex DNA mixtures.
    Type: Application
    Filed: February 1, 2023
    Publication date: September 14, 2023
    Applicant: Massachusetts Institute of Technology.
    Inventors: Darrell Orlyn Ricke, James Harper, Brian S. Helfer, Joseph Isaacson, Adam M. Michaleas, Martha S. Petrovick, Eric Schwoebel, Anna Shcherbina, Philip Fremont-Smith, James G Watkins, Edward C. Wack
  • Patent number: 11655498
    Abstract: The disclosure provides various systems and methods for identifying individuals from one or more samples. In particular, improved systems and methods of analysis are provided for handling multiple contributors, as well as systems and methods that model not only individual error rates per locus but factor in amplification of errors induced through PCR cycles. In some embodiments, modeling of error rates can be applied in multi-contributor settings to more accurately establish real alleles from artifacts. Other aspects involve application of sequencing in error modeling. Further, methods are provided for determining the presence of common individual DNA profiles in one or more complex DNA mixtures and for deconvolution of multiple complex DNA mixtures into shared individual components.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: May 23, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Darrell Orlyn Ricke, James Harper, Brian S. Helfer, Joseph Isaacson, Adam M. Michaleas, Martha S. Petrovick, Eric Schwoebel, Anna Shcherbina, Philip Fremont-Smith, James G. Watkins, Edward C. Wack
  • Publication number: 20210017592
    Abstract: The disclosure provides various systems and methods for identifying individuals from one or more samples. In particular, improved systems and methods of analysis are provided for handling multiple contributors, as well as systems and methods that model not only individual error rates per locus but factor in amplification of errors induced through PCR cycles. In some embodiments, modeling of error rates can be applied in multi-contributor settings to more accurately establish real alleles from artifacts. Other aspects involve application of sequencing in error modeling. Further, methods are provided for determining the presence of common individual DNA profiles in one or more complex DNA mixtures and for deconvolution of multiple complex DNA mixtures into shared individual components.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 21, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Darrell Orlyn Ricke, James Harper, Brian S. Helfer, Joseph Isaacson, Adam M. Michaleas, Martha S. Petrovick, Eric Schwoebel, Anna Shcherbina, Philip Fremont-Smith, James G. Watkins, Edward C. Wack
  • Patent number: 9291549
    Abstract: The invention described herein provides methods for the detection of target particles, such as pathogens, soluble antigens, nucleic acids, toxins, chemicals, plant pathogens, blood borne pathogens, bacteria, viruses and the like. Also described is an emittor cell comprising a receptor, wherein the receptor can be an antibody or an Fc receptor, and an emittor molecule for the detection of a target particle in a sample wherein the target particle to be detected is bound by one or more receptors on the emittor cell. Also provided are optoelectronic sensor devices for detecting a target particle in a sample, including in a plurality of samples.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: March 22, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Eric Schwoebel, James Harper, Martha S. Petrovick, Frances Nargi, Mark Hollis, Bernadette Johnson, Joseph Lacirignola, Richard Mathews, Kristine Hogan, Trina Vian, Allan Heff, Mark Hennessy, Songeeta Palchaudhuri, Todd Rider
  • Publication number: 20120225423
    Abstract: The invention described herein provides methods for the detection of target particles, such as pathogens, soluble antigens, nucleic acids, toxins, chemicals, plant pathogens, blood borne pathogens, bacteria, viruses and the like. Also described is an emittor cell comprising a receptor, wherein the receptor can be an antibody or an Fc receptor, and an emittor molecule for the detection of a target particle in a sample wherein the target particle to be detected is bound by one or more receptors on the emittor cell. Also provided are optoelectronic sensor devices for detecting a target particle in a sample, including in a plurality of samples.
    Type: Application
    Filed: April 24, 2012
    Publication date: September 6, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Eric Schwoebel, James Harper, Martha S. Petrovick, Frances Nargi, Mark Hollis, Bernadette Johnson, Joseph Lacirignola, Richard Mathews, Kristine Hogan, Trina Vian, Allan Heff, Mark Hennessy, Songeeta Palchaudhuri, Todd Rider
  • Patent number: 8216797
    Abstract: The invention described herein provides methods for the detection of target particles, such as pathogens, soluble antigens, nucleic acids, toxins, chemicals, plant pathogens, blood borne pathogens, bacteria, viruses and the like. Also described is an emittor cell comprising a receptor, wherein the receptor can be an antibody or an Fc receptor, and an emittor molecule for the detection of a target particle in a sample wherein the target particle to be detected is bound by one or more receptors on the emittor cell. Also provided are optoelectronic sensor devices for detecting a target particle in a sample, including in a plurality of samples.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: July 10, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Eric Schwoebel, James Harper, Martha S. Petrovick, Frances Nargi, Mark Hollis, Bernadette Johnson, Joseph Lacirignola, Richard Mathews, Kristine Hogan, Trina Vian, Allan Heff, Mark Hennessy, Songeeta Palchaudhuri, Todd Rider
  • Publication number: 20100062415
    Abstract: The invention described herein provides methods for the detection of target particles, such as pathogens, soluble antigens, nucleic acids, toxins, chemicals, plant pathogens, blood borne pathogens, bacteria, viruses and the like. Also described is an emittor cell comprising a receptor, wherein the receptor can be an antibody or an Fc receptor, and an emittor molecule for the detection of a target particle in a sample wherein the target particle to be detected is bound by one or more receptors on the emittor cell. Also provided are optoelectronic sensor devices for detecting a target particle in a sample, including in a plurality of samples.
    Type: Application
    Filed: November 30, 2006
    Publication date: March 11, 2010
    Inventors: Eric Schwoebel, James Harper, Martha S. Petrovick, Frances Nargi, Mark Hollis, Bernadette Johnson, Joseph Lacirignola, Richard Mathews, Kristine Hogan, Trina Vian, Allan Heff, Mark Hennessy, Songeeta Palchaudhuri, Todd Rider
  • Publication number: 20080009017
    Abstract: The invention relates to optoelectronic systems for detecting one or more target particles. The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
    Type: Application
    Filed: May 7, 2007
    Publication date: January 10, 2008
    Inventors: James Harper, Richard Mathews, Bernadette Johnson, Martha Petrovick, Ann Rundell, Frances Nargi, Timothy Stephens, Linda Mendenhall, Mark Hollis, Albert Young, Todd Rider, Eric Schwoebel, Trina Vian