Patents by Inventor Eric Stave

Eric Stave has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7274606
    Abstract: A system and method to reduce standby currents in input buffers in an electronic device (e.g., a memory device) is disclosed. The input buffers may be activated or deactivated by the state of a chip select (CS) signal. In case of a memory device, the active and precharge standby currents in memory input buffers may be reduced by turning off the input buffers when the CS signal is in an inactive state. A memory controller may supply the CS signal to the memory device at least one clock cycle earlier than other control signals including the RAS (row address strobe) signal, the CAS (column address strobe) signal, the WE (write enable) signal, etc. A modified I/O circuit in the memory device may internally delay the CS signal by at least one clock cycle to coincide its timing with the RAS/CAS signals for normal data access operation whereas the turning on/off of the memory input buffers may be performed by the CS signal received from the memory controller on the previous cycle.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Eric Stave
  • Publication number: 20070058460
    Abstract: A system and method to reduce standby currents in input buffers in an electronic device (e.g., a memory device) is disclosed. The input buffers may be activated or deactivated by the state of a chip select (CS) signal. In case of a memory device, the active and precharge standby currents in memory input buffers may be reduced by turning off the input buffers when the CS signal is in an inactive state. A memory controller may supply the CS signal to the memory device at least one clock cycle earlier than other control signals including the RAS (row address strobe) signal, the CAS (column address strobe) signal, the WE (write enable) signal, etc. A modified I/O circuit in the memory device may internally delay the CS signal by at least one clock cycle to coincide its timing with the RAS/CAS signals for normal data access operation whereas the turning on/off of the memory input buffers may be performed by the CS signal received from the memory controller on the previous cycle.
    Type: Application
    Filed: November 9, 2006
    Publication date: March 15, 2007
    Inventor: Eric Stave
  • Patent number: 7167401
    Abstract: A system and method to reduce standby currents in input buffers in an electronic device (e.g., a memory device) is disclosed. The input buffers may be activated or deactivated by the state of a chip select (CS) signal. In case of a memory device, the active and precharge standby currents in memory input buffers may be reduced by turning off the input buffers when the CS signal is in an inactive state. A memory controller may supply the CS signal to the memory device at least one clock cycle earlier than other control signals including the RAS (row address strobe) signal, the CAS (column address strobe) signal, the WE (write enable) signal, etc. A modified I/O circuit in the memory device may internally delay the CS signal by at least one clock cycle to coincide its timing with the RAS/CAS signals for normal data access operation whereas the turning on/off of the memory input buffers may be performed by the CS signal received from the memory controller on the previous cycle.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: January 23, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Eric Stave
  • Publication number: 20060253738
    Abstract: A system and method to operate an electronic device, such as a memory chip, in a test mode using the device's built-in ODT (on die termination) circuit is disclosed. One or more test mode related signals, which include on-die signals and other relevant information, may be transferred from the integrated circuit of the electronic device to an external processor using the device's ODT circuit instead of the output data signal driver circuit. Therefore, no capacitive loading of output drivers occurs during test mode operations. Thus the speed of the output data path (i.e., the circuit path propagating non-test mode related signals from the electronic device to other external units in the system) is not affected by test mode operations, allowing a system designer to increase the speed of the data output path as much as desired. Further, deterioration in the quality of signals output from the output drivers is also avoided.
    Type: Application
    Filed: July 13, 2006
    Publication date: November 9, 2006
    Inventor: Eric Stave
  • Publication number: 20060176744
    Abstract: A system and method to reduce standby currents in input buffers in an electronic device (e.g., a memory device) is disclosed. The input buffers may be activated or deactivated by the state of a chip select (CS) signal. In case of a memory device, the active and precharge standby currents in memory input buffers may be reduced by turning off the input buffers when the CS signal is in an inactive state. A memory controller may supply the CS signal to the memory device at least one clock cycle earlier than other control signals including the RAS (row address strobe) signal, the CAS (column address strobe) signal, the WE (write enable) signal, etc. A modified I/O circuit in the memory device may internally delay the CS signal by at least one clock cycle to coincide its timing with the RAS/CAS signals for normal data access operation whereas the turning on/off of the memory input buffers may be performed by the CS signal received from the memory controller on the previous cycle.
    Type: Application
    Filed: February 10, 2005
    Publication date: August 10, 2006
    Inventor: Eric Stave
  • Publication number: 20050283671
    Abstract: A system and method to operate an electronic device, such as a memory chip, in a test mode using the device's built-in ODT (on die termination) circuit is disclosed. One or more test mode related signals, which include on-die signals and other relevant information, may be transferred from the integrated circuit of the electronic device to an external processor using the device's ODT circuit instead of the output data signal driver circuit. Therefore, no capacitive loading of output drivers occurs during test mode operations. Thus the speed of the output data path (i.e., the circuit path propagating non-test mode related signals from the electronic device to other external units in the system) is not affected by test mode operations, allowing a system designer to increase the speed of the data output path as much as desired. Further, deterioration in the quality of signals output from the output drivers is also avoided.
    Type: Application
    Filed: June 21, 2004
    Publication date: December 22, 2005
    Inventor: Eric Stave
  • Patent number: 6002623
    Abstract: A test circuit and method for a semiconductor memory array such as a dynamic random access memory (DRAM) or static random access memory (SRAM) array that reduces the required testing time. A row of memory cells is concurrently written to a logic level, then read. Any faulty memory cells will discharge both true and complementary data lines through a diode or a diode-connected FET. The resulting voltage on the data line is less than its precharged high logic level, allowing detection of any faulty memory cell in the row of memory cells.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: December 14, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Eric Stave, Phillip G. Wald
  • Patent number: 5892720
    Abstract: A test circuit and method for a semiconductor memory array such as a dynamic random access memory (DRAM) or static random access memory (SRAM) array that reduces the required testing time. A row of memory cells is concurrently written to a logic level, then read. Any faulty memory cells will discharge both true and complementary data lines through a diode or a diode-connected FET. The resulting voltage on the data line is less than its precharged high logic level, allowing detection of any faulty memory cell in the row of memory cells.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: April 6, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Eric Stave, Phillip G. Wald
  • Patent number: 5684809
    Abstract: A test circuit and method for a semiconductor memory array such as a dynamic random access memory (DRAM) or static random access memory (SRAM) array that reduces the required testing time. A row of memory cells is concurrently written to a logic level, then read. Any faulty memory cells will discharge both true and complementary data lines through a diode or a diode-connected FET. The resulting voltage on the data line is less than its precharged high logic level, allowing detection of any faulty memory cell in the row of memory cells.
    Type: Grant
    Filed: February 12, 1997
    Date of Patent: November 4, 1997
    Assignee: Micron Technology, Inc.
    Inventors: Eric Stave, Phillip G. Wald