Patents by Inventor Eric Tulsky

Eric Tulsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11855251
    Abstract: Set forth herein are compositions comprising A·(LiBH4)·B·(LiX)·C·(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?13?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A·(LiBH4)·B·(LiX)·C·(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A·(LiBH4)·B·(LiX)·C·(LiNH2) compositions and other materials.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: December 26, 2023
    Assignee: QUANTUMSCAPE BATTERY, INC.
    Inventors: Zhebo Chen, Tim Holme, Marie Mayer, Nick Perkins, Eric Tulsky, Cheng-Chieh Chao, Christopher Dekmezian, Shuang Li
  • Publication number: 20230282873
    Abstract: Set forth herein are compositions comprising A·(LiBH4)·B·(LiX)·C·(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?B?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A·(LiBH4)·B·(LiX)·C·(LiNH2) compositions.
    Type: Application
    Filed: January 10, 2023
    Publication date: September 7, 2023
    Inventors: Zhebo CHEN, Tim HOLME, Marie MAYER, Nick PERKINS, Eric TULSKY, Cheng-Chieh CHAO, Christopher DEKMEZIAN, Shuang LI
  • Patent number: 11581612
    Abstract: Set forth herein are compositions comprising A.(LiBH4).B.(LiX).C.(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?B?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A.(LiBH4).B.(LiX).C.(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A.(LiBH4).B.(LiX).C.(LiNH2) compositions and other materials.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: February 14, 2023
    Assignee: QuantumScape Battery, Inc.
    Inventors: Zhebo Chen, Tim Holme, Marie Mayer, Nick Perkins, Eric Tulsky, Cheng-Chieh Chao, Christopher Dekmezian, Shuang Li
  • Publication number: 20210234230
    Abstract: Set forth herein are compositions comprising A.(LiBH4).B.(LiX).C.(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?B?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A.(LiBH4).B.(LiX).C.(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A.(LiBH4).B.(LiX).C.(LiNH2) compositions and other materials.
    Type: Application
    Filed: April 13, 2021
    Publication date: July 29, 2021
    Inventors: Zhebo CHEN, Tim Holme, Marie Mayer, Nick Perkins, Eric Tulsky, Cheng-Chieh Chao, Christopher Dekmezian, Shuang Li
  • Patent number: 11015220
    Abstract: Disclosed herein are conjugates comprising a biomolecule linked to a label that have biological activity and are useful in a wide variety of biological applications. For example, provided herein are polymerase-nanoparticle conjugates including a polymerase linked to a nanoparticle, wherein the conjugate has polymerase activity. Such conjugates can exhibit reduced aggregation and improved stochiometries wherein the average biomolecule:nanoparticle ratio approaches or equals 1:1. Also disclosed herein are improved methods for preparing such conjugates, and methods and systems for using such conjugates in biological applications such as nucleotide incorporation, primer extension and single molecule sequencing.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 25, 2021
    Assignee: Life Technologies Corporation
    Inventors: Theo Nikiforov, Daniel Mazur, Xinzhan Peng, Tommie Lloyd Lincecum, Yuri Belosludtsev, Howard Reese, Dmitriy Gremyachinskiy, Roman Rozhkov, John Mauro, Joseph Beechem, Eric Tulsky, Imad Naasani, Kari Haley, Joseph Treadway
  • Patent number: 11011796
    Abstract: Set forth herein are compositions comprising A.(LiBH4).B.(LiX).C.(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?B?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A.(LiBH4).B.(LiX).C.(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A.(LiBH4).B.(LiX).C.(LiNH2) compositions and other materials.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: May 18, 2021
    Assignee: QuantumScape Battery, Inc.
    Inventors: Zhebo Chen, Tim Holme, Marie Mayer, Nick Perkins, Eric Tulsky, Cheng-Chieh Chao, Christopher Dekmezian, Shuang Li
  • Patent number: 10686034
    Abstract: A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: June 16, 2020
    Assignee: Life Technologies Corporation
    Inventors: Eric Welch, Joseph Bartel, Eric Tulsky, Joseph Treadway, Yongfen Chen
  • Patent number: 10511012
    Abstract: Battery systems using coated conversion materials as the active material in battery cathodes are provided herein. Protective coatings may be an oxide, phosphate, or fluoride, and may be lithiated. The coating may selectively isolate the conversion material from the electrolyte. Methods for fabricating batteries and battery systems with coated conversion material are also provided herein.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: December 17, 2019
    Assignee: QuantumScape Corporation
    Inventors: Rainer Fasching, Joseph Han, Jon Shan, Ghyrn E. Loveness, Eric Tulsky, Timothy Holme
  • Publication number: 20190319240
    Abstract: Set forth herein are compositions comprising A.(LiBH4).B.(LiX).C.(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1?A?3, 0.1?B?4, and 0?C?9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A.(LiBH4).B.(LiX).C.(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A.(LiBH4).B.(LiX).C.(LiNH2) compositions and other materials.
    Type: Application
    Filed: October 20, 2017
    Publication date: October 17, 2019
    Inventors: Zhebo CHEN, Tim HOLME, Marie MAYER, Nick PERKINS, Eric TULSKY, Cheng-Chieh CHAO, Christopher DEKMEZIAN, Shuang LI
  • Publication number: 20190062830
    Abstract: Disclosed herein are conjugates comprising a biomolecule linked to a label that have biological activity and are useful in a wide variety of biological applications. For example, provided herein are polymerase-nanoparticle conjugates including a polymerase linked to a nanoparticle, wherein the conjugate has polymerase activity. Such conjugates can exhibit reduced aggregation and improved stochiometries wherein the average biomolecule:nanoparticle ratio approaches or equals 1:1. Also disclosed herein are improved methods for preparing such conjugates, and methods and systems for using such conjugates in biological applications such as nucleotide incorporation, primer extension and single molecule sequencing.
    Type: Application
    Filed: September 6, 2018
    Publication date: February 28, 2019
    Inventors: Theo NIKIFOROV, Daniel MAZUR, Xinzhan PENG, Tommie Lloyd LINCECUM, Yuri BELOSLUDTSEV, Howard REESE, Dmitriy GREMYACHINSKIY, Roman ROZHKOV, John MAURO, Joseph BEECHEM, Eric TULSKY, Imad NAASANI, Kari HALEY, Joseph TREADWAY
  • Publication number: 20180374920
    Abstract: A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 27, 2018
    Inventors: Eric WELCH, Joseph BARTEL, Eric TULSKY, Joseph TREADWAY, Yongfen CHEN
  • Patent number: 10093972
    Abstract: Disclosed herein are conjugates comprising a biomolecule linked to a label that have biological activity and are useful in a wide variety of biological applications. For example, provided herein are polymerase-nanoparticle conjugates including a polymerase linked to a nanoparticle, wherein the conjugate has polymerase activity. Such conjugates can exhibit reduced aggregation and improved stochiometries wherein the average biomolecule:nanoparticle ratio approaches or equals 1:1. Also disclosed herein are improved methods for preparing such conjugates, and methods and systems for using such conjugates in biological applications such as nucleotide incorporation, primer extension and single molecule sequencing.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: October 9, 2018
    Assignee: Life Technologies Corporation
    Inventors: Theo Nikiforov, Daniel Mazur, Xinzhan Peng, Tommie Lloyd Lincecum, Yuri Belosludtsev, Howard Reese, Dmitriy Gremyachinskiy, Roman Rozhkov, John Mauro, Joseph Beechem, Eric Tulsky, Imad Naasani, Kari Haley, Joseph Treadway
  • Patent number: 10084042
    Abstract: A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: September 25, 2018
    Assignee: Life Technologies Corporation
    Inventors: Eric Welch, Joseph Bartel, Eric Tulsky, Joseph Treadway, Yongfen Chen
  • Publication number: 20180158907
    Abstract: A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
    Type: Application
    Filed: January 10, 2018
    Publication date: June 7, 2018
    Inventors: Eric WELCH, Joseph Bartel, Eric Tulsky, Joseph Treadway, Yongfen Chen
  • Patent number: 9937560
    Abstract: Methods for preparing core/shell nanocrystals are provided, using mismatched shell precursors and an electron transfer agent to control the nucleation and growth phases of particle formation. One method includes forming a reaction mixture comprising a plurality of nanocrystals, a first shell precursor, a second shell precursor, a weak electron transfer agent, and optionally a solvent, wherein, the first shell precursor and the second shell precursor have different oxidation states; and heating the reaction mixture to a temperature high enough to induce formation of the shell on each of the plurality of nanocrystals.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: April 10, 2018
    Assignee: Life Technologies Corporation
    Inventors: Eric Tulsky, Joseph Bartel, Joseph Treadway
  • Publication number: 20170186840
    Abstract: A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
    Type: Application
    Filed: January 9, 2017
    Publication date: June 29, 2017
    Inventors: Eric WELCH, Joseph Bartel, Eric Tulsky, Joseph Treadway, Yongfen Chen
  • Publication number: 20170098824
    Abstract: Battery systems using coated conversion materials as the active material in battery cathodes are provided herein. Protective coatings may be an oxide, phosphate, or fluoride, and may be lithiated. The coating may selectively isolate the conversion material from the electrolyte. Methods for fabricating batteries and battery systems with coated conversion material are also provided herein.
    Type: Application
    Filed: October 28, 2016
    Publication date: April 6, 2017
    Inventors: Rainer Fasching, Joseph Han, Jon Shan, Ghym E. Loveness, Eric Tulsky, Timothy Holme
  • Patent number: 9577037
    Abstract: A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: February 21, 2017
    Assignee: Life Technologies Corporation
    Inventors: Eric Welch, Joseph Bartel, Eric Tulsky, Joseph Treadway, Yongfen Chen
  • Patent number: 9543564
    Abstract: Battery systems using coated conversion materials as the active material in battery cathodes are provided herein. Protective coatings may be an oxide, phosphate, or fluoride, and may be lithiated. The coating may selectively isolate the conversion material from the electrolyte. Methods for fabricating batteries and battery systems with coated conversion material are also provided herein.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: January 10, 2017
    Assignee: QuantumScape Corporation
    Inventors: Rainer Fasching, Joseph Han, Jon Shan, Ghyrn E. Loveness, Eric Tulsky, Timothy Holme
  • Patent number: 9476885
    Abstract: Provided herein are methods for making water-soluble nanoparticles comprising a core/shell nanocrystal that is coated with a surface layer comprising enough hydrophilic ligands to render the nanoparticle water soluble or water dispersable. Methods for crosslinking molecules on the surface of a nanoparticle, which methods can be used on the above water-soluble nanoparticles also are provided. Nanoparticle compositions resulting from these methods are also provided.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: October 25, 2016
    Assignee: Life Technologies Corporation
    Inventors: Eric Tulsky, Kari Haley, Imad Naasani, John Mauro, Roman Rozhkov, Joseph Treadway