Patents by Inventor Eric W. Kurman

Eric W. Kurman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230099188
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: November 15, 2022
    Publication date: March 30, 2023
    Inventors: Mark R. Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy Alexander Dixon, Anshu Ajit Pradhan, Robert Tad Rozbicki
  • Publication number: 20220055943
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20200124933
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20200050072
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10551711
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: February 4, 2020
    Assignee: View, Inc.
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20160103379
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: October 15, 2015
    Publication date: April 14, 2016
    Inventors: Mark Kozlowski, Eric W. Kurman, Zhongchun Wang, Mike Scobey, Jeremy A. Dixon, Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 7773284
    Abstract: One exemplary embodiment of an electrochromic device comprises a single cavity Fabry-Pérot filter in which the metal conductive layers forming the cavity are sandwiched by conductive dielectric layers. Another exemplary embodiment of an electrochromic device comprises a dual-cavity Fabry-Pérot filter.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 10, 2010
    Assignee: Soladigm, Inc.
    Inventors: Eric W. Kurman, Roger W. Phillips
  • Publication number: 20100079844
    Abstract: One exemplary embodiment of an electrochromic device comprises a single cavity Fabry-Pérot filter in which the metal conductive layers forming the cavity are sandwiched by conductive dielectric layers. Another exemplary embodiment of an electrochromic device comprises a dual-cavity Fabry-Pérot filter.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Eric W. Kurman, Roger M. Phillips
  • Patent number: 6068738
    Abstract: A method, apparatus and carrier for coating a CRT screen after assembly. The method and apparatus includes isolating a surface portion of the CRT to be coated from the remaining surface to prevent or minimize coating problems resulting from outgassing or difficulty in controlling coating process parameters and to isolate noncompatible components from the deposition environment.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: May 30, 2000
    Inventors: Erik J. Bjornard, Clifford E. Taylor, Debra M. Steffenhagen, Eric W. Kurman
  • Patent number: 5728456
    Abstract: The present invention relates to electrically-conductive, absorbing, contrast-enhancing antireflection coatings having excellent optical properties characterized by, specifically, a large bandwidth ratio, i.e., a ratio indicative of the range of wavelengths for which the reflectance value is less than 0.6%, and a small brightness value for the visible wavelengths. It has been surprisingly discovered that a simple, two-layer substrate coating consisting of only a first thin layer of a transparent material having a low refractive index and a second very thin layer of an absorbing, electrically conductive, transition metal oxynitride material provides high performance, electrically conductive, contrast-enhancing antireflection coatings having small brightness values and large bandwidth ratios. The present invention provides antireflection coatings having brightness values less than or equal to about 0.22, and preferably less than or equal to about 0.15.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: March 17, 1998
    Assignee: Optical Coating Laboratory, Inc.
    Inventors: Robert W. Adair, Paul M. Le Febvre, Eric W. Kurman
  • Patent number: 5688389
    Abstract: A method, apparatus and carrier for coating a CRT screen after assembly. The method and apparatus includes isolating a surface portion of the CRT to be coated from the remaining surface to prevent or minimize coating problems resulting from outgassing or difficulty in controlling coating process parameters and to isolate noncompatible components from the deposition environment.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 18, 1997
    Assignee: Viratec Thin Films, Inc.
    Inventors: Erik J. Bjornard, Eric W. Kurman, Debra M. Steffenhagen, Clifford L. Taylor
  • Patent number: 5651723
    Abstract: A method and apparatus for cleaning a substrate in preparation for thin film coating. The invention involves cleaning the substrate in a cleaning chamber under controlled conditions by a blast of carbon dioxide pellets suspended in and transported by a compressed gas medium.
    Type: Grant
    Filed: April 13, 1994
    Date of Patent: July 29, 1997
    Assignee: Viratec Thin Films, Inc.
    Inventors: Erik J. Bjornard, Eric W. Kurman, David A. Shogren, Jeffrey J. Hoffman
  • Patent number: 5620572
    Abstract: A method and apparatus for coating a CRT screen after assembly. The method and apparatus includes isolating a surface portion of the CRT to be coated from the remaining surface to prevent or minimize coating problems resulting from outgassing and to isolate noncompatible components from the deposition environment.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 15, 1997
    Assignee: Viratec Thin Films, Inc.
    Inventors: Erik J. Bjornard, Eric W. Kurman, Debra M. Steffenhagen
  • Patent number: 5489369
    Abstract: A method and apparatus for coating a CRT screen after assembly. The method and apparatus includes isolating a surface portion of the CRT to be coated from the remaining surface to prevent or minimize coating problems resulting from outgassing and to isolate noncompatible components from the deposition environment.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: February 6, 1996
    Assignee: Viratec Thin Films, Inc.
    Inventors: Erik J. Bjornard, Eric W. Kurman, Debra M. Steffenhagen