Patents by Inventor Erich W. Wolf, II

Erich W. Wolf, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180093094
    Abstract: A system and method for anchoring an electrode that stimulates a dorsal root ganglion. The anchoring device includes a screw, collet, and locking cap. The screw is inserted into bone of the pars interarticularis and the electrode is inserted through the screw and positioned next to the dorsal root ganglion for stimulation. The screw includes a recess that is shaped to fit the collet. The collet has flexible arms. When assembled, the locking cap forces the collet into the recess thereby moving the flexible arms inward radially, impinging on the electrode and holding the electrode in place adjacent the dorsal root ganglion.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 5, 2018
    Inventor: Erich W. Wolf, II
  • Patent number: 9901395
    Abstract: A cautery apparatus and method are provided that coagulate tissue along a seam and near the ends of the seam. The cautery apparatus and method include a cautery device and an EMG system. When a set of electrodes for the EMG are placed in the lower extremities of a patient, the cautery method injects a current at the cautery device and monitors the EMG electrodes. When nerve stimulation is detected at the EMG electrodes, during tissue coagulation, the position of the cautery device is changed. Generally, the cautery device is repositioned to eliminate nerve stimulation, thereby avoiding nerve damage.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: February 27, 2018
    Inventor: Erich W. Wolf, II
  • Patent number: 9821161
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a pair of optical elements for emitting light from an IR emitter and for collecting reflected light into a photodetector, determines a set of measured photocurrents. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion. The system includes automatic calibration of the optical fiber sensor when the patient is at rest, and a patient orientation detection.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 21, 2017
    Inventor: Erich W. Wolf, II
  • Publication number: 20170252564
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a pair of optical elements for emitting light from an IR emitter and for collecting reflected light into a photodetector, determines a set of measured photocurrents. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion. The system includes automatic calibration of the optical fiber sensor when the patient is at rest, and a patient orientation detection.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 7, 2017
    Inventor: Erich W. Wolf, II
  • Patent number: 9656097
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a set of optical elements for emitting light from a set of IR emitters and for collecting reflected light into a set of IR photodetectors, determines a set of measured optical intensities. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 23, 2017
    Inventor: Erich W. Wolf, II
  • Publication number: 20170128726
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a pair of optical elements for emitting light from an IR emitter and for collecting reflected light into a photodetector, determines a set of measured photocurrents. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion. The system includes automatic calibration of the optical fiber sensor when the patient is at rest, and a patient orientation detection.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Inventor: Erich W. Wolf, II
  • Patent number: 9550063
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a pair of optical elements for emitting light from an IR emitter and for collecting reflected light into a photodetector, determines a set of measured photocurrents. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion. The system includes automatic calibration of the optical fiber sensor when the patient is at rest, and a patient orientation detection.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: January 24, 2017
    Inventor: Erich W. Wolf, II
  • Patent number: 9132273
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a set of optical elements for emitting light from a set of IR emitters and for collecting reflected light into a set of IR photodetectors, determines a set of measured optical intensities. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. A ratio of measured optical intensities in combination with a total measured optical intensity is used to interpolate a set of electrode stimulation settings from a calibration table. Electrode pulse characteristics are adjusted in real time to minimize changes in stimulation perceived by the patient during motion.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 15, 2015
    Inventor: Erich W. Wolf, II
  • Publication number: 20140330341
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a pair of optical elements for emitting light from an IR emitter and for collecting reflected light into a photodetector, determines a set of measured photocurrents. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion. The system includes automatic calibration of the optical fiber sensor when the patient is at rest, and a patient orientation detection.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventor: Erich W. Wolf, II
  • Publication number: 20140257166
    Abstract: An improvement for a programmable valve system of the type implanted in a patient and used to divert cerebrospinal fluid (CSF) from an intraventricular space to a terminus such as the peritoneal cavity. Such system includes means for establishing a flow path for the CSF to the terminus, which flow path includes a normally closed valve and means for adjusting the opening pressure of the valve in order to regulate the quantity of CSF diverted. The improvement enables an operator to be apprised of the actual opening pressure setting of the valve. A sensor is implantable at the patient and responds to the actual opening pressure setting, by generating an NIR telemetry signal indicative of the actual setting. This signal is transcutaneously transmitted through the skin of the patient to an external point. The telemetry signal is processed to produce observer intelligible data indicating the opening pressure setting of the valve.
    Type: Application
    Filed: October 3, 2011
    Publication date: September 11, 2014
    Inventor: Erich W. Wolf, II
  • Patent number: 8784332
    Abstract: A system for measuring and converting to an observer intelligible form an internal physiological parameter of a patient. The invention allows transcutaneous telemetry of intracranial pressure via a system which includes a patient implanted sensor module and an external processing module, optically coupled to the sensor module via an external coupling module. A sensor within the sensor module transduces the measured pressure and a near infrared emitter transmits the telemetry when interrogated by the external coupling module. A set of tuned inductor-crystal circuits comprised in part of a cylindrical crystal oscillator whose resonant frequency is sensed by a dipper circuit arrangement is provided. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field generated within the external coupling module.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 22, 2014
    Inventor: Erich W. Wolf, II
  • Publication number: 20140135597
    Abstract: A system for measuring and converting to an observer intelligible form an internal physiological parameter of a patient. The invention allows transcutaneous telemetry of intracranial pressure via a system which includes a patient implanted sensor module and an external processing module, optically coupled to the sensor module via an external coupling module. A sensor within the sensor module transduces the measured pressure and a near infrared emitter transmits the telemetry when interrogated by the external coupling module. A set of tuned inductor-crystal circuits comprised in part of a cylindrical crystal oscillator whose resonant frequency is sensed by a dipper circuit arrangement is provided. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field generated within the external coupling module.
    Type: Application
    Filed: January 20, 2014
    Publication date: May 15, 2014
    Inventor: Erich W. Wolf, II
  • Publication number: 20140135647
    Abstract: A system for measuring and converting to an observer intelligible form an internal physiological parameter of a patient. The invention allows transcutaneous telemetry of intracranial pressure via a system which includes a patient implanted sensor module and an external processing module, optically coupled to the sensor module via an external coupling module. A sensor within the sensor module transduces the measured pressure and a near infrared emitter transmits the telemetry when interrogated by the external coupling module. A set of tuned inductor-crystal circuits comprised in part of a cylindrical crystal oscillator whose resonant frequency is sensed by a dipper circuit arrangement is provided. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field generated within the external coupling module.
    Type: Application
    Filed: January 22, 2014
    Publication date: May 15, 2014
    Inventor: Erich W. Wolf, II
  • Publication number: 20140074182
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a set of optical elements for emitting light from a set of IR emitters and for collecting reflected light into a set of IR photodetectors, determines a set of measured optical intensities. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. A ratio of measured optical intensities in combination with a total measured optical intensity is used to interpolate a set of electrode stimulation settings from a calibration table. Electrode pulse characteristics are adjusted in real time to minimize changes in stimulation perceived by the patient during motion.
    Type: Application
    Filed: February 28, 2013
    Publication date: March 13, 2014
    Inventor: Erich W. Wolf, II
  • Publication number: 20140005755
    Abstract: A positionally sensitive spinal cord stimulation apparatus and method using near-infrared (NIR) reflectometry are provided for automatic adjustments of spinal cord stimulation. The system comprises an electrode assembly with an integrated optical fiber sensor for sensing spinal cord position. The integrated optical fiber sensor, comprising a set of optical elements for emitting light from a set of IR emitters and for collecting reflected light into a set of IR photodetectors, determines a set of measured optical intensities. As the spinal cord changes position, the angles of incidence for light from the IR emitter and the measured optical intensities change. Electrode pulse characteristics are adjusted in real time, based on the set of measured optical intensities, to minimize changes in stimulation perceived by the patient during motion.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Inventor: Erich W. Wolf, II
  • Publication number: 20130310830
    Abstract: A cautery apparatus and method are provided that coagulate tissue along a seam and near the ends of the seam. The cautery apparatus and method include a cautery device and an EMG system. When a set of electrodes for the EMG are placed in the lower extremities of a patient, the cautery method injects a current at the cautery device and monitors the EMG electrodes. When nerve stimulation is detected at the EMG electrodes, during tissue coagulation, the position of the cautery device is changed. Generally, the cautery device is repositioned to eliminate nerve stimulation, thereby avoiding nerve damage.
    Type: Application
    Filed: May 20, 2013
    Publication date: November 21, 2013
    Inventor: Erich W. Wolf,, II
  • Patent number: 8543213
    Abstract: A spinal cord stimulation apparatus and method for automatic adjustments of SCS using near-infrared (NIR) reflectometry are provided. A positionally sensitive system for spinal cord stimulation including an electrode assembly with integrated optical components for sensing spinal cord position relative to a stimulating electrode array is provided. The integrated optical components include an IR emitter and a pair of IR photodetectors. As light from the IR emitter reflects from the spinal cord, it is detected by each of the pair of IR photodetectors. As the spinal cord changes position so do the angles of incidence for detected light from the IR emitter, a ratio of optical intensities in combination with a total optical intensity is measured and used to interpolate a set of electrode stimulation settings from a calibration table. Electrode pulse characteristics are adjusted in real time to minimize changes in stimulation perceived by the patient during motion.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: September 24, 2013
    Inventor: Erich W. Wolf, II
  • Patent number: 8474720
    Abstract: An optical text scanning device compatible with a small handheld computer such as a personal digital assistant (PDA). The scanning device allows for a clear view of the text that is scanned simultaneous to the scanning process so that the operator can continuously align the device to the text. The scanned images of the text are converted in real-time to standard byte or word characters for subsequent display on the computer's viewing screen. The operator can quickly verify the accuracy of the conversion by comparing the displayed character with the actual character of text on the surface that is being scanned. Scanned text characters are stored in standard digital text files for ease of manipulation.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: July 2, 2013
    Inventor: Erich W. Wolf, II
  • Publication number: 20130035577
    Abstract: A system for measuring and converting to an observer intelligible form an internal physiological parameter of a patient. The invention allows transcutaneous telemetry of intracranial pressure via a system which includes a patient implanted sensor module and an external processing module, optically coupled to the sensor module via an external coupling module. A sensor within the sensor module transduces the measured pressure and a near infrared emitter transmits the telemetry when interrogated by the external coupling module. A set of tuned inductor-crystal circuits comprised in part of a cylindrical crystal oscillator whose resonant frequency is sensed by a dipper circuit arrangement is provided. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field generated within the external coupling module.
    Type: Application
    Filed: October 4, 2012
    Publication date: February 7, 2013
    Inventor: Erich W. Wolf, II
  • Publication number: 20130035142
    Abstract: A radiation shield comprises a substrate polymer layer, a conductive layer having an aperture providing access to a front face of a cellular telephone, adjacent the substrate polymer layer, and an adhesion surface adjacent the conductive layer and the front face. A radiation shield comprising a first substrate polymer layer, a conductive layer having an aperture providing access to a touch-sensitive screen of the front face, adjacent the first substrate polymer layer, a second substrate polymer layer adjacent the conductive layer, and an adhesion surface adjacent the conductive layer and the front face. At least one opening provides access to the front face.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 7, 2013
    Inventor: Erich W. Wolf, II