Patents by Inventor Erik Rylander

Erik Rylander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11435304
    Abstract: Downhole fluid volumes of a geological formation may be estimated using nuclear magnetic resonance (NMR) measurements, even in organic shale reservoirs. Multi-dimensional NMR measurements, such as two-dimensional NMR measurements and/or, in some cases, one or more well-logging measurements relating to total organic carbon may be used to estimate downhole fluid volumes of hydrocarbons such as bitumen, light hydrocarbon, kerogen, and/or water. Having identified the fluid volumes in this manner or any other suitable manner from the NMR measurements, a reservoir producibility index (RPI) may be generated. The downhole fluid volumes and/or the RPI may be output on a well log to enable an operator to make operational and strategic decisions for well production.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: September 6, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Vivek Anand, Ravinath Kausik Kadayam Viswanathan, Tianmin Jiang, Erik Rylander, Mansoor Ali, Richard E. Lewis
  • Patent number: 10983246
    Abstract: The systems and methods provided herein relate to extracting maturity-based properties from input log data obtained by a downhole well logging tool. A maturity inversion is performed using the input log data, a log response model, and at least one maturity model to extract maturity-based properties from the input log data. The maturity-based properties are provided in an output log, such that subsequent down hole operation of the formation may account for the maturity-based properties.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 20, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Laurent Mosse, Erik Rylander, Paul Craddock
  • Patent number: 10802099
    Abstract: A methods are provided for investigating a sample containing hydrocarbons by subjecting the sample to a nuclear magnetic resonance (NMR) sequence using NMR equipment, using the NMR equipment to detect signals from the sample in response to the NMR sequence, analyzing the signals to extract a distribution of relaxation times (or diffusions), and computing a value for a parameter of the sample as a function of at least one of the relaxation times (or diffusions), wherein the computing utilizes a correction factor that modifies the value for the parameter as a function of relaxation time for at least short relaxation times (or as a function of diffusion for at least large diffusion coefficients).
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: October 13, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Lalitha Venkataramanan, Fred K. Gruber, Tarek M. Habashy, Ridvan Akkurt, Badarinadh Vissapragada, Richard E. Lewis, Erik Rylander
  • Publication number: 20190383757
    Abstract: Downhole fluid volumes of a geological formation may be estimated using nuclear magnetic resonance (NMR) measurements, even in organic shale reservoirs. Multi-dimensional NMR measurements, such as two-dimensional NMR measurements and/or, in some cases, one or more well-logging measurements relating to total organic carbon may be used to estimate downhole fluid volumes of hydrocarbons such as bitumen, light hydrocarbon, kerogen, and/or water. Having identified the fluid volumes in this manner or any other suitable manner from the NMR measurements, a reservoir producibility index (RPI) may be generated. The downhole fluid volumes and/or the RPI may be output on a well log to enable an operator to make operational and strategic decisions for well production.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Inventors: Vivek Anand, Ravinath Kausik Kadayam Viswanathan, Tianmin Jiang, Erik Rylander, Mansoor Ali, Richard E. Lewis
  • Patent number: 10502863
    Abstract: A method can include receiving data for a geologic environment where the data include data acquired via different types of borehole tool sensors; based at least in part on the data, determining rock composition of the geologic environment where the rock composition includes depositional components and diagenetic components; and, based at least in part on the rock composition, outputting a stratigraphic model of at least a portion of the geologic environment.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: December 10, 2019
    Assignee: Schlumberger Technology Corporation
    Inventors: Laurent Mosse, Helena Gamero Diaz, Josselin Kherroubi, Christina Calvin, Erik Rylander
  • Patent number: 10466186
    Abstract: A method for testing an unconventional core sample is provided. The method involves loading the unconventional core sample into a sample holder and introducing fluid into the sample holder at an elevated pressure such that fluid is injected into the internal pore space of the unconventional core sample in order to resaturate the unconventional core sample with the fluid, wherein the fluid is selected from the group including a hydrocarbon fluid and a water-based formation fluid. An apparatus and a system used in combination with the method are also provided.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: November 5, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Ravinath Kausik Kadayam Viswanathan, Kamilla Fellah, Erik Rylander, Philip M. Singer, Richard E. Lewis
  • Patent number: 10401313
    Abstract: Downhole fluid volumes of a geological formation may be estimated using nuclear magnetic resonance (NMR) measurements, even in organic shale reservoirs. Multi-dimensional NMR measurements, such as two-dimensional NMR measurements and/or, in some cases, one or more well-logging measurements relating to total organic carbon may be used to estimate downhole fluid volumes of hydrocarbons such as bitumen, light hydrocarbon, kerogen, and/or water. Having identified the fluid volumes in this manner or any other suitable manner from the NMR measurements, a reservoir producibility index (RPI) may be generated. The downhole fluid volumes and/or the RPI may be output on a well log to enable an operator to make operational and strategic decisions for well production.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: September 3, 2019
    Assignee: Schlumberger Technology Corporation
    Inventors: Vivek Anand, Ravinath Kausik Kadayam Viswanathan, Tianmin Jiang, Erik Rylander, Mansoor Ali, Richard E. Lewis
  • Patent number: 10385259
    Abstract: Treatment methods and treatment fluids for increasing permeability of organic shale formations are described herein. The treatment method includes treating an organic shale formation with a treatment fluid. The treatment fluid includes a solvent that dissolves bitumen in the shale formation. After treating the shale formation with the treatment fluid, oil is recovered from the shale formation. By removing bitumen from pores and pore throats within the formation, the solvent increases permeability of the formation and allows mobile oil to flow more easily through the formation.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 20, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: George Waters, Richard Lewis, Erik Rylander, Andrew E. Pomerantz, Ridvan Akkurt, Roderick Bovee, Syed A. Ali
  • Publication number: 20190011517
    Abstract: A methods are provided for investigating a sample containing hydrocarbons by subjecting the sample to a nuclear magnetic resonance (NMR) sequence using NMR equipment, using the NMR equipment to detect signals from the sample in response to the NMR sequence, analyzing the signals to extract a distribution of relaxation times (or diffusions), and computing a value for a parameter of the sample as a function of at least one of the relaxation times (or diffusions), wherein the computing utilizes a correction factor that modifies the value for the parameter as a function of relaxation time for at least short relaxation times (or as a function of diffusion for at least large diffusion coefficients).
    Type: Application
    Filed: April 3, 2018
    Publication date: January 10, 2019
    Inventors: Lalitha Venkataramanan, Fred K. Gruber, Tarek M. Habashy, Ridvan Akkurt, Badarinadh Vissapragada, Richard E. Lewis, Erik Rylander
  • Patent number: 9939506
    Abstract: A methods are provided for investigating a sample containing hydrocarbons by subjecting the sample to a nuclear magnetic resonance (NMR) sequence using NMR equipment, using the NMR equipment to detect signals from the sample in response to the NMR sequence, analyzing the signals to extract a distribution of relaxation times (or diffusions), and computing a value for a parameter of the sample as a function of at least one of the relaxation times (or diffusions), wherein the computing utilizes a correction factor that modifies the value for the parameter as a function of relaxation time for at least short relaxation times (or as a function of diffusion for at least large diffusion coefficients).
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: April 10, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Lalitha Venkataramanan, Fred K. Gruber, Tarek M. Habashy, Ridvan Akkurt, Badarinadh Vissapragada, Richard E. Lewis, Erik Rylander
  • Publication number: 20180031732
    Abstract: A method can include receiving data for a geologic environment where the data include data acquired via different types of borehole tool sensors; based at least in part on the data, determining rock composition of the geologic environment where the rock composition includes depositional components and diagenetic components; and, based at least in part on the rock composition, outputting a stratigraphic model of at least a portion of the geologic environment.
    Type: Application
    Filed: February 12, 2016
    Publication date: February 1, 2018
    Inventors: Laurent Mosse, Helena Gamero Diaz, Josselin Kherroubi, Tina Calvin, Erik Rylander
  • Publication number: 20170343497
    Abstract: Downhole fluid volumes of a geological formation may be estimated using nuclear magnetic resonance (NMR) measurements, even in organic shale reservoirs. Multi-dimensional NMR measurements, such as two-dimensional NMR measurements and/or, in some cases, one or more well-logging measurements relating to total organic carbon may be used to estimate downhole fluid volumes of hydrocarbons such as bitumen, light hydrocarbon, kerogen, and/or water. Having identified the fluid volumes in this manner or any other suitable manner from the NMR measurements, a reservoir producibility index (RPI) may be generated. The downhole fluid volumes and/or the RPI may be output on a well log to enable an operator to make operational and strategic decisions for well production.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 30, 2017
    Inventors: Vivek Anand, Ravinath Kausik Kadayam Viswanathan, Tianmin Jiang, Erik Rylander, Mansoor Ali, Richard E. Lewis
  • Publication number: 20170176639
    Abstract: The systems and methods provided herein relate to extracting maturity-based properties from input log data obtained by a downhole well logging tool. A maturity inversion is performed using the input log data, a log response model, and at least one maturity model to extract maturity-based properties from the input log data. The maturity-based properties are provided in an output log, such that subsequent down hole operation of the formation may account for the maturity-based properties.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Inventors: Laurent Mosse, Erik Rylander, Paul Craddock
  • Publication number: 20160341680
    Abstract: A method for testing an unconventional core sample is provided. The method involves loading the unconventional core sample into a sample holder and introducing fluid into the sample holder at an elevated pressure such that fluid is injected into the internal pore space of the unconventional core sample in order to resaturate the unconventional core sample with the fluid, wherein the fluid is selected from the group including a hydrocarbon fluid and a water-based formation fluid. An apparatus and a system used in combination with the method are also provided.
    Type: Application
    Filed: January 21, 2015
    Publication date: November 24, 2016
    Inventors: Ravinath Kausik Kadayam Viswanathan, Kamilla Fellah, Erik Rylander, Philip M. Singer, Richard E. Lewis
  • Publication number: 20160194551
    Abstract: Treatment methods and treatment fluids for increasing permeability of organic shale formations are described herein. The treatment method includes treating an organic shale formation with a treatment fluid. The treatment fluid includes a solvent that dissolves bitumen in the shale formation. After treating the shale formation with the treatment fluid, oil is recovered from the shale formation. By removing bitumen from pores and pore throats within the formation, the solvent increases permeability of the formation and allows mobile oil to flow more easily through the formation.
    Type: Application
    Filed: August 7, 2014
    Publication date: July 7, 2016
    Inventors: George WATERS, Richard LEWIS, Erik RYLANDER, Andrew E. POMERANTZ, Ridvan AKKURT, Roderick BOVEE, Syed A. ALI
  • Publication number: 20150177351
    Abstract: A methods are provided for investigating a sample containing hydrocarbons by subjecting the sample to a nuclear magnetic resonance (NMR) sequence using NMR equipment, using the NMR equipment to detect signals from the sample in response to the NMR sequence, analyzing the signals to extract a distribution of relaxation times (or diffusions), and computing a value for a parameter of the sample as a function of at least one of the relaxation times (or diffusions), wherein the computing utilizes a correction factor that modifies the value for the parameter as a function of relaxation time for at least short relaxation times (or as a function of diffusion for at least large diffusion coefficients).
    Type: Application
    Filed: May 24, 2013
    Publication date: June 25, 2015
    Applicant: Schlumberger Technology Corporation
    Inventors: Lalitha Venkataramanan, Fred K. Gruber, Tarek M. Habashy, Ridvan Akkurt, Badarinadh Vissapragada, Richard E. Lewis, Erik Rylander
  • Patent number: 7155967
    Abstract: A method and apparatus for testing formations surrounding an earth borehole. The method includes the following steps: providing a tool movable through the borehole; providing a flow line in the tool; establishing fluid communication between the formations and the flow line of the tool; and providing a sand trap in communication with the flow line of the tool for trapping sand flowing with fluid from the formations.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: January 2, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: Erik Rylander, Robert Jeffries, Glenn Houston, Sammy S. Haddad
  • Patent number: 7036362
    Abstract: A method is disclosed for determining viscosity and density of fluid from formations surrounding an earth borehole, including the following steps: (a) suspending a formation testing device in the borehole; (b) drawing formation fluid into the device; (c) causing the fluid to flow in a flow line under a first set of conditions; (d) causing the fluid to flow in the flow line under a second set of conditions; (e) measuring a first fluid pressure differential in the flow line during fluid flow under the first set of conditions, and measuring a second pressure differential in the flow line during fluid flow under the second set of conditions; and (f) determining density and viscosity of the fluid as a function of the first and second measured pressure differentials.
    Type: Grant
    Filed: January 20, 2003
    Date of Patent: May 2, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Sammy S. Haddad, Erik Rylander, Rahul Joshi
  • Publication number: 20040139798
    Abstract: A method is disclosed for determining viscosity and density of fluid from formations surrounding an earth borehole, including the following steps: (a) suspending a formation testing device in the borehole; (b) drawing formation fluid into the device; (c) causing the fluid to flow in a flow line under a first set of conditions; (d) causing the fluid to flow in the flow line under a second set of conditions; (e) measuring a first fluid pressure differential in the flow line during fluid flow under the first set of conditions, and measuring a second pressure differential in the flow line during fluid flow under the second set of conditions; and (f) determining density and viscosity of the fluid as a function of the first and second measured pressure differentials.
    Type: Application
    Filed: January 20, 2003
    Publication date: July 22, 2004
    Inventors: Sammy S. Haddad, Erik Rylander, Rahul Joshi
  • Publication number: 20040007058
    Abstract: A method and apparatus for testing formations surrounding an earth borehole. The method includes the following steps: providing a tool movable through the borehole; providing a flow line in the tool; establishing fluid communication between the formations and the flow line of the tool; and providing a sand trap in communication with the flow line of the tool for trapping sand flowing with fluid from the formations.
    Type: Application
    Filed: July 9, 2002
    Publication date: January 15, 2004
    Inventors: Erik Rylander, Robert Jeffries, Glenn Houston, Sammy S. Haddad