Patents by Inventor Erik Sauar

Erik Sauar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230092576
    Abstract: A method for manufacturing predominantly amorphous silicon-containing particles includes a chemical compound of formula: Si(1?x)Cx, where 0.005?x<0.05. The particles, when subjected to XRD analysis applying unmonochromated CuK? radiation, exhibit one peak at around 28° and one peak at around 52°. Both peaks have a Full Width at Half Maximum of at least 5° when using Gaussian peak fitting. The method includes forming a homogeneous gas mixture of a first precursor gas of a silicon containing compound and at least one second precursor gas of a substitution element M containing compound, injecting the homogeneous gas mixture of the first and second precursor gases into a reactor space where the precursor gases are heated to a temperature in the range of from 700 to 900° C. so that the precursor gases react and form particles, and collecting and cooling the particles to a temperature in the range of from ambient temperature up to about 350° C.
    Type: Application
    Filed: February 12, 2021
    Publication date: March 23, 2023
    Applicant: CENATE AS
    Inventors: Martin Kirkengen, Erik Sauar, Werner Filtvedt
  • Publication number: 20210030202
    Abstract: This invention relates to a cooking apparatus comprising a container having a bottom wall, side wall, and an upper wall enclosing a first inner chamber of the container, where the bottom wall and side wall of the container are thermally insulating, and the upper wall is thermally insulating except for at least one planar and substantially horizontally oriented cooking zone which is thermally conductive, a first phase-change material located inside and substantially filling the first inner chamber of the container, an electric resistance heating element located in the first phase-change material and electrically connected to a source of electric energy, and a releasable lid made of a thermally insulating material adapted to cover and thermally insulate each of the at least one cooking zone.
    Type: Application
    Filed: February 20, 2019
    Publication date: February 4, 2021
    Inventor: Erik SAUAR
  • Patent number: 10696851
    Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: June 30, 2020
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Patent number: 10461208
    Abstract: A rear contact heterojunction solar cell and a fabricating method. The solar cell comprises a silicon substrate having a passivating layer and an intrinsic amorphous silicon layer. At a back side of the intrinsic amorphous silicon layer, an emitter layer and a base layer are provided. Interposed between these emitter and base layers is a separation layer comprising an electrically insulating material. This separation layer as well as the base layer and emitter layer may be generated by vapor deposition. Due to such processing, adjacent regions of the emitter layer and the separating layer and adjacent regions of the base layer and the separating layer partially laterally overlap in overlapping areas in such a way that at least a part of the separating layer is located closer to the substrate than an overlapping portion of the respective one of the emitter layer and the base layer.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: October 29, 2019
    Assignee: REC SOLAR PTE. LTD.
    Inventors: Martin Kirkengen, Erik Sauar
  • Patent number: 10233338
    Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: March 19, 2019
    Assignee: PLANT PV, Inc.
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Patent number: 10224452
    Abstract: A method is provided of fabricating a photo voltaic generator panel (15) including a polymer back sheet (24) with at least one attachment feature (21) so as to provide means of attaching the panel to a structural support (25) upon subsequent installation. At least one polymer attachment feature (21) is applied to the outer side of the polymer back sheet of the panel during the manufacturing process for the panel whereby the attachment feature projects with respect to the back sheet. The application may be in conjunction with a lamination process, or subsequent to the lamination process, or as an integral part of the back sheet manufacturing process. The attachment feature is adapted to engage with a corresponding feature (26) or features to be found on a support structure (25) located at a site for the installation of the panel. The said at least one polymer attachment feature and said outer side of the polymer back sheet have a similar thermal expansion coefficient.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 5, 2019
    Assignee: REC SOLAR PTE. LTD.
    Inventors: Borge Bjorneklett, Oystein Holm, Erik Sauar
  • Patent number: 10147830
    Abstract: This invention relates to a method for producing solar cells, and photovoltaic panels thereof. The method for producing solar panels comprises employing a number of semiconductor wafers and/or semiconductor sheets of films prefabricated to prepare them for back side metallization, which are placed and attached adjacent to each other and with their front side facing downwards onto the back side of the front glass, before subsequent processing that includes depositing at least one metal layer covering the entire front glass including the back side of the attached wafers/sheets of films. The metallic layer is then patterned/divided into electrically isolated contacts for each solar cell and into interconnections between adjacent solar cells.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: December 4, 2018
    Assignee: REC SOLAR PTE. LTD.
    Inventors: Martin Nese, Erik Sauar, Andreas Bentzen, Paul Alan Basore
  • Patent number: 10000645
    Abstract: A method of forming a fired multilayer stack are described. The method involves the steps of a) applying a wet metal particle layer on at least a portion of a surface of a substrate, b) drying the wet metal particle layer to form a dried metal particle layer, c) applying a wet intercalation layer directly on at least a portion of the dried metal particle layer to form a multilayer stack, d) drying the multilayer stack, and e) co-firing the multilayer stack to form the fired multilayer stack. The intercalating layer may include one or more of low temperature base metal particles, crystalline metal oxide particles, and glass frit particles. The wet metal particle layer may include aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel or combinations thereof.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: June 19, 2018
    Assignee: PLANT PV, Inc.
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Publication number: 20170323993
    Abstract: A hybrid photovoltaic device (1) comprising a thin film solar cell (2) disposed in a first layer (21) comprising an array of vertically aligned nanowires (25), said nanowires having a junction with a first band gap corresponding to a first spectral range. The nanowires (25) form absorbing regions, and non-absorbing regions are formed between the nanowires. A bulk solar cell (3) s disposed in a second layer (31), positioned below the first layer (21), having a junction with a second band gap, which is smaller than said first band gap and corresponding to a second spectral range. The nanowires are provided in the first layer with a lateral density selected a such that a predetermined portion of an incident photonic wave-front will pass through the non-absorbing regions without absorption in the first spectral range, into the bulk solar cell for absorption in both the first spectral range and the second spectral range.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 9, 2017
    Inventors: Mikael BJÖRK, Jonas OHLSSON, Lars SAMUELSON, Erik SAUAR, Ingvar ÅBERG
  • Publication number: 20170317224
    Abstract: A rear contact heterojunction solar cell and a fabricating method. The solar cell comprises a silicon substrate having a passivating layer and an intrinsic amorphous silicon layer. At a back side of the intrinsic amorphous silicon layer, an emitter layer and a base layer are provided. Interposed between these emitter and base layers is a separation layer comprising an electrically insulating material. This separation layer as well as the base layer and emitter layer may be generated by vapour deposition. Due to such processing, adjacent regions of the emitter layer and the separating layer and adjacent regions of the base layer and the separating layer partially laterally overlap in overlapping areas in such a way that at least a part of the separating layer is located closer to the substrate than an overlapping portion of the respective one of the emitter layer and the base layer.
    Type: Application
    Filed: May 30, 2017
    Publication date: November 2, 2017
    Applicant: REC SOLAR PTE. LTD.
    Inventors: Martin KIRKENGEN, Erik SAUAR
  • Patent number: 9748418
    Abstract: A rear contact heterojunction solar cell and a fabricating method. The solar cell comprises a silicon substrate having a passivating layer and an intrinsic amorphous silicon layer. At a back side of the intrinsic amorphous silicon layer, an emitter layer and a base layer are provided. Interposed between these emitter and base layers is a separation layer comprising an electrically insulating material. This separation layer as well as the base layer and emitter layer may be generated by vapor deposition. Due to such processing, adjacent regions of the emitter layer and the separating layer and adjacent regions of the base layer and the separating layer partially laterally overlap in overlapping areas in such a way that at least a part of the separating layer is located closer to the substrate than an overlapping portion of the respective one of the emitter layer and the base layer.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: August 29, 2017
    Assignee: REC SOLAR PTE. LTD.
    Inventors: Martin Kirkengen, Erik Sauar
  • Patent number: 9741878
    Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: August 22, 2017
    Assignee: PLANT PV, Inc.
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Publication number: 20170148933
    Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Publication number: 20170145224
    Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Publication number: 20170148944
    Abstract: A method of forming a fired multilayer stack are described. The method involves the steps of a) applying a wet metal particle layer on at least a portion of a surface of a substrate, b) drying the wet metal particle layer to form a dried metal particle layer, c) applying a wet intercalation layer directly on at least a portion of the dried metal particle layer to form a multilayer stack, d) drying the multilayer stack, and e) co-firing the multilayer stack to form the fired multilayer stack. The intercalating layer may include one or more of low temperature base metal particles, crystalline metal oxide particles, and glass frit particles. The wet metal particle layer may include aluminum, copper, iron, nickel, molybdenum, tungsten, tantalum, titanium, steel or combinations thereof.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Publication number: 20170148937
    Abstract: Intercalation pastes for use with semiconductor devices are disclosed. The pastes contain precious metal particles, intercalating particles, and an organic vehicle and can be used to improve the material properties of metal particle layers. Specific formulations have been developed to be screen-printed directly onto a dried metal particle layer and fired to make a fired multilayer stack. The fired multilayer stack can be tailored to create a solderable surface, high mechanical strength, and low contact resistance. In some embodiments, the fired multilayer stack can etch through a dielectric layer to improve adhesion to a substrate. Such pastes can be used to increase the efficiency of silicon solar cells, specifically multi- and mono-crystalline silicon back-surface field (BSF), and passivated emitter and rear contact (PERC) photovoltaic cells. Other applications include integrated circuits and more broadly, electronic devices.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Inventors: Brian E. Hardin, Erik Sauar, Dhea Suseno, Jesse J. Hinricher, Jennifer Huang, Tom Yu-Tang Lin, Stephen T. Connor, Daniel J. Hellebusch, Craig H. Peters
  • Publication number: 20160068730
    Abstract: The present invention relates to a method for production of photovoltaic wafers and abrasive slurries for multi-wire sawing of wafers for photovoltaic applications, and more specific to abrasive slurries which are easy to remove from the wafers after sawing, where the abrasive slurry comprises one part recycled abrasive slurry, an alkali in sufficient amount to provide a pH in the abrasive slurry mixture in the range from 6.0 to 9.0, and one part novel abrasive slurry in an amount sufficient to provide an ion content in the abrasive slurry mixture to provide an electric conductivity of less than 50 ?S/cm.
    Type: Application
    Filed: November 12, 2015
    Publication date: March 10, 2016
    Applicant: REC SOLAR PTE. LTD.
    Inventors: Mohan Menon, Anne Lohne, Erik Sauar, Stian Sannes
  • Publication number: 20150203986
    Abstract: A crystalline silicon ingot is produced using a directional solidification process. In particular, a crucible is loaded with silicon feedstock above a seed layer of uniform crystalline orientation. The silicon feedstock and an upper part of the seed layer are melted forming molten material in the crucible. This molten material is then solidified, during which process a crystalline structure based on that of the seed layer is formed in a silicon ingot. The seed layer is arranged such that a {110} crystallographic plane is normal to the direction of solidification. It is found that offers a substantial improvement in the proportion of mono-crystalline silicon formed in the ingot as compared to alternative crystallographic orientations and leads to highly uniform solar cells after an isotropic texture.
    Type: Application
    Filed: December 3, 2012
    Publication date: July 23, 2015
    Inventors: Erik Sauar, Oleg Fefelov, Lode Carnel
  • Publication number: 20150144174
    Abstract: A crystalline silicon ingot is produced using a directional solidification process. In particular, a crucible is loaded with silicon feedstock above a seed layer of uniform crystalline orientation. The silicon feedstock and an upper part of the seed layer are melted forming molten material in the crucible. This molten material is then solidified, during which process a crystalline structure based on that of the seed layer is formed in a silicon ingot. The seed layer is arranged such that a {110} crystallographic plane is normal to the direction of solidification and also so that a peripheral surface of the seed layer predominantly also lies in a {110} crystallographic plane. It is found that this arrangement offers a substantial improvement in the proportion of mono-crystalline silicon formed in the ingot as compared to alternative crystallographic orientations.
    Type: Application
    Filed: May 15, 2013
    Publication date: May 28, 2015
    Inventors: Oleg Fefelov, Erik Sauar, Egor Vladimirov
  • Publication number: 20150068597
    Abstract: The surface recombination velocity of a silicon sample is reduced by deposition of a thin hydrogenated amorphous silicon or hydrogenated amorphous silicon carbide film, followed by deposition of a thin hydrogenated silicon nitride film. The surface recombination velocity is further decreased by a subsequent anneal. Silicon solar cell structures using this new method for efficient reduction of the surface recombination velocity is claimed.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicants: REC SOLAR PTE, LTD., INSTITUTT FOR ENERGITEKNIKK, UNIVERSITETET I OSLO
    Inventors: Alexander ULYASHIN, Andreas BENTZEN, Bengt SVENSSON, Arve HOLT, Erik SAUAR