Patents by Inventor Erno Klaassen
Erno Klaassen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11918324Abstract: A pulse transit time is measured non-invasively and used to calculate a blood pressure value. A method of determining one or more blood pressure values includes propagating an alternating drive current through a thorax of a subject via electrodes located on a wrist-worn device. Resulting voltage levels of the subject are sensed by the wrist-worn device. The voltage levels are processed to detect when a volume of blood is ejected from the left ventricle. Output from a pulse arrival sensor coupled to the wrist-worn device is processed to detect when a blood pressure pulse generated by ejection of the volume of blood from the left ventricle arrives at the wrist. A pulse transit time (PTT) for transit of the blood pressure pulse from the left ventricle to the wrist is calculated. One or more blood pressure values for the subject are determined based on the PTT.Type: GrantFiled: August 11, 2020Date of Patent: March 5, 2024Assignee: Apple Inc.Inventors: Thomas J. Sullivan, Wren Nancy Dougherty, Richard C. Kimoto, Erno Klaassen, Ravi K. Narasimhan, Stephen J. Waydo, Todd K. Whitehurst, Derek Park-Shing Young, Santiago Quijano, Zijing Zeng
-
Publication number: 20210041287Abstract: A sensor system includes a sensor stack, a differential amplifier, an analog-to-digital converter, and a processor. The sensor stack includes a piezoelectric material having a first side opposing a second side, a first electrode connected to the first side, and a second electrode connected to the second side. The differential amplifier is coupled to the first and second electrodes and is configured to generate a differential output indicative of vibrations sensed by the piezoelectric material. The analog-to-differential converter is configured to digitize the differential output. The processor is configured to identify a type of biological vibration included in the digitized differential output.Type: ApplicationFiled: July 15, 2020Publication date: February 11, 2021Inventors: Henry Rimminen, Ali M. Amin, Timothy L. Weadon, Yindar Chuo, Zijing Zeng, Erno Klaassen
-
Publication number: 20200367767Abstract: A pulse transit time is measured non-invasively and used to calculate a blood pressure value. A method of determining one or more blood pressure values includes propagating an alternating drive current through a thorax of a subject via electrodes located on a wrist-worn device. Resulting voltage levels of the subject are sensed by the wrist-worn device. The voltage levels are processed to detect when a volume of blood is ejected from the left ventricle. Output from a pulse arrival sensor coupled to the wrist-worn device is processed to detect when a blood pressure pulse generated by ejection of the volume of blood from the left ventricle arrives at the wrist. A pulse transit time (PTT) for transit of the blood pressure pulse from the left ventricle to the wrist is calculated. One or more blood pressure values for the subject are determined based on the PTT.Type: ApplicationFiled: August 11, 2020Publication date: November 26, 2020Inventors: Thomas J. Sullivan, Wren Nancy Dougherty, Richard C. Kimoto, Erno Klaassen, Ravi K. Narasimhan, Stephen J. Waydo, Todd K. Whitehurst, Derek Park-Shing Young, Santiago Quijano, Zijing Zeng
-
Patent number: 10779738Abstract: Wrist-worn devices and related methods measure a pulse transit time non-invasively and calculate a blood pressure value using the pulse transit time. A wrist-worn device include a wrist-worn elongate band, at least four EKG or ICG electrodes coupled to the wrist-worn device for detecting a ventricular ejection of a heart, a photo-plethysmogram (PPG) sensor coupled to the wrist-worn device for detecting arrival of a blood pressure pulse at the user's wrist, and a controller configured to calculate a pulse transit time (PTT) for the blood pressure pulse. The controller calculates one or more blood pressure values for the user based on the PTT.Type: GrantFiled: August 18, 2017Date of Patent: September 22, 2020Inventors: Thomas J. Sullivan, Wren Nancy Dougherty, Richard C. Kimoto, Erno Klaassen, Ravi Narasimhan, Stephen J. Waydo, Todd K. Whitehurst, Derek Park-Shing Young, Santiago Quijano, Zijing Zeng
-
Patent number: 10702171Abstract: The present invention generally relates to blood pressure monitoring. In some embodiments, methods and devices of measuring a mean arterial pressure are provided and/or monitoring blood pressure changes. A wrist-worn device may include a plurality of sensors backed by a plurality of actuators. Subsets of the plurality of sensors may be selectively actuateable against a wrist of a user using one or more of the plurality of actuators. A preferred sensor and location may be identified based on pressure signals received from each of the sensors. In some embodiments, devices may use a fluid bladder coupled with piezoelectric film sensors. A fluid bladder pressure sensor may be used to calibrate the piezoelectric film signal to provide a static and dynamic pressure reading. In yet another embodiment, a mean arterial pressure may be calculated by processing a swept pressure signal obtained as a sensor is swept through different heights.Type: GrantFiled: September 8, 2015Date of Patent: July 7, 2020Inventors: Ravi Narasimhan, Zijing Zeng, Richard C. Kimoto, Erno Klaassen, Thomas J. Sullivan, Derek Park-Shing Young, Todd K. Whitehurst
-
Patent number: 10517489Abstract: Wrist-worn devices and related methods measure a pulse transit time non-invasively and calculate a blood pressure value using the pulse transit time. A wrist-worn device includes an accelerometer, a photo-lethysmogram (PPG) or a pulse pressure sensor, and a controller. The PPG or the pulse pressure sensor coupled to the wrist-worn device for detecting an arrival of a blood pressure pulse at the user's wrist. The controller is configured to process output signals from the accelerometer to detect when the blood pressure pulse is propagated from the left ventricle of the user's heart, process a signal from the PPG or the pulse pressure sensor to detect when the blood pressure pulse arrives at the wrist, calculate a pulse transit time (PTT) for propagation of the blood pressure pulse from the left ventricle to the wrist, and generate one or more blood pressure values for the user based on the PTT.Type: GrantFiled: September 8, 2015Date of Patent: December 31, 2019Inventors: Ravi Narasimhan, Richard C. Kimoto, Thomas J. Sullivan, Todd K. Whitehurst, Derek Park-shing Young, Zijing Zeng, Erno Klaassen
-
Publication number: 20170360306Abstract: The present invention generally relates to blood pressure monitoring. In some embodiments, methods and devices of measuring a mean arterial pressure are provided and/or monitoring blood pressure changes. A wrist-worn device may include a plurality of sensors backed by a plurality of actuators. Subsets of the plurality of sensors may be selectively actuateable against a wrist of a user using one or more of the plurality of actuators. A preferred sensor and location may be identified based on pressure signals received from each of the sensors. In some embodiments, devices may use a fluid bladder coupled with piezoelectric film sensors. A fluid bladder pressure sensor may be used to calibrate the piezoelectric film signal to provide a static and dynamic pressure reading. In yet another embodiment, a mean arterial pressure may be calculated by processing a swept pressure signal obtained as a sensor is swept through different heights.Type: ApplicationFiled: September 8, 2015Publication date: December 21, 2017Applicant: APPLE INC.Inventors: Ravi Narasimhan, Zijing Zeng, Richard C. Kimoto, Erno Klaassen, Thomas J. Sullivan, Derek Park-Shing Young, Todd K. Whitehurst
-
Publication number: 20170340219Abstract: Wrist-worn devices and related methods measure a pulse transit time non-invasively and calculate a blood pressure value using the pulse transit time. A wrist-worn device include a wrist-worn elongate band, at least four EKG or ICG electrodes coupled to the wrist-worn device for detecting a ventricular ejection of a heart, a photo-plethysmogram (PPG) sensor coupled to the wrist-worn device for detecting arrival of a blood pressure pulse at the user's wrist, and a controller configured to calculate a pulse transit time (PTT) for the blood pressure pulse. The controller calculates one or more blood pressure values for the user based on the PTT.Type: ApplicationFiled: August 18, 2017Publication date: November 30, 2017Inventors: Thomas J. Sullivan, Wren Nancy Dougherty, Richard C. Kimoto, Erno Klaassen, Ravi Narasimhan, Stephen J. Waydo, Todd K. Whitehurst, Derek Park-Shing Young, Santiago Quijano, Zijing Zeng
-
Publication number: 20170281024Abstract: Wrist-worn devices and related methods measure a pulse transit time non-invasively and calculate a blood pressure value using the pulse transit time. A wrist-worn device includes an accelerometer, a photo-plethysmogram (PPG) or a pulse pressure sensor, and a controller. The PPG or the pulse pressure sensor coupled to the wrist-worn device for detecting an arrival of a blood pressure pulse at the user's wrist. The controller is configured to process output signals from the accelerometer to detect when the blood pressure pulse is propagated from the left ventricle of the user's heart, process a signal from the PPG or the pulse pressure sensor to detect when the blood pressure pulse arrives at the wrist, calculate a pulse transit time (PTT) for propagation of the blood pressure pulse from the left ventricle to the wrist, and generate one or more blood pressure values for the user based on the PTT.Type: ApplicationFiled: September 8, 2015Publication date: October 5, 2017Inventors: Ravi Narasimhan, Richard C. Kimoto, Thomas J. Sullivan, Todd K. Whitehurst, Derek Park-shing Young, Zijing Zeng, Erno Klaassen
-
Patent number: 9037234Abstract: Described herein are implantable cardiac stimulation devices, and methods for use therewith. A pacing channel of such a device includes a pace output terminal, a pulse generator and at least two pace return electrode terminals. The pace output terminal is coupleable to an electrode for use as an anode. The pulse generator is configured to selectively output an electrical stimulation pulse to the pace output terminal. Each of the pace return electrode terminals is coupleable to a separate one of at least two further electrodes for use as a cathode. Switching circuitry selectively couples any one of the pace return electrode terminals of the pacing channel to the pace return capacitor of the pacing channel at a time, thereby enabling the pace return capacitor to be shared by at least two of the pace return electrode terminals of the pacing channel. Additional embodiments are also disclosed herein.Type: GrantFiled: July 25, 2013Date of Patent: May 19, 2015Assignee: Pacesetter, Inc.Inventors: Eric Labbe, Christian Sauer, Erno Klaassen
-
Patent number: 8965526Abstract: Active rejection techniques are used to cancel MRI gradient signals in an implantable medical device. An active component placed in an input channel of the implantable medical device actively rejects MRI gradient signals received on the input channel. A sensing circuit that senses an external MRI gradient signal generates a control signal that controls the active component. For example, the control signal may be the inverse of the external MRI gradient signal. An active component that receives an input signal including a desired signal component (e.g., a cardiac signal) and an undesired MRI gradient signal component may thus use this control signal to reject the undesired MRI gradient signal component.Type: GrantFiled: October 10, 2012Date of Patent: February 24, 2015Assignee: Pacesetter, Inc.Inventors: Jin Zhang, Erno Klaassen
-
Publication number: 20150032175Abstract: Described herein are implantable cardiac stimulation devices, and methods for use therewith. A pacing channel of such a device includes a pace output terminal, a pulse generator and at least two pace return electrode terminals. The pace output terminal is coupleable to an electrode for use as an anode. The pulse generator is configured to selectively output an electrical stimulation pulse to the pace output terminal. Each of the pace return electrode terminals is coupleable to a separate one of at least two further electrodes for use as a cathode. Switching circuitry selectively couples any one of the pace return electrode terminals of the pacing channel to the pace return capacitor of the pacing channel at a time, thereby enabling the pace return capacitor to be shared by at least two of the pace return electrode terminals of the pacing channel. Additional embodiments are also disclosed herein.Type: ApplicationFiled: July 25, 2013Publication date: January 29, 2015Applicant: Pacesetter, Inc.Inventors: Eric Labbe, Christian Sauer, Erno Klaassen
-
Publication number: 20140100637Abstract: Active rejection techniques are used to cancel MRI gradient signals in an implantable medical device. An active component placed in an input channel of the implantable medical device actively rejects MRI gradient signals received on the input channel. A sensing circuit that senses an external MRI gradient signal generates a control signal that controls the active component. For example, the control signal may be the inverse of the external MRI gradient signal. An active component that receives an input signal including a desired signal component (e.g., a cardiac signal) and an undesired MRI gradient signal component may thus use this control signal to reject the undesired MRI gradient signal component.Type: ApplicationFiled: October 10, 2012Publication date: April 10, 2014Applicant: PACESETTER, INC.Inventors: Jin Zhang, Erno Klaassen
-
Patent number: 7872394Abstract: In certain embodiments, a MEMS actuator is provided comprising a frame and a movable structure coupled to the frame. A vertical comb drive is provided between the frame and the movable structure to actuate the movable structure.Type: GrantFiled: December 12, 2002Date of Patent: January 18, 2011Inventors: John Gritters, Christopher A. Bang, Erno Klaassen, Li Fan, Richard Chen, Hsin-Chih Yeh, Ezekiel John Joseph Kruglick
-
Patent number: 7545228Abstract: A method for generating a temperature-compensated timing signal that includes counting, within an update interval, a first number of oscillations of a first micro-electromechanical (MEMS) resonator, a second number of oscillations of a second MEMS resonator and a third number of oscillations of a digitally controlled oscillator (DCO), computing a target DCO count based on the first number and second number of oscillations, computing a loop error signal based on the target DCO count and the third number of oscillations, and modifying an output frequency of a temperature-dependent (DCO) timing signal based on the loop error signal. The duration of the update interval may also be modified based on temperature conditions, and the update interval may also be interrupted and the output frequency immediately adjusted, if a significant temperature change is detected. Thus, dynamic and precise temperature compensation is achieved that accommodates constant, slowly changing, and rapidly changing temperature conditions.Type: GrantFiled: September 12, 2007Date of Patent: June 9, 2009Assignee: SiTime Inc.Inventors: Crist Lu, Erno Klaassen, Sathi Perumal
-
Patent number: 7489017Abstract: A fixed parallel plate micro-mechanical systems (MEMS) based sensor is fabricated to allow a dissolved dielectric to flow through a porous top plate, coming to rest on a bottom plate. A post-deposition bake ensures further purity and uniformity of the dielectric layer. In one embodiment, the dielectric is a polymer. In one embodiment, a support layer is deposited onto the top plate for strengthening the sensor. In another embodiment, the bottom plate is dual-layered for a narrowed gap. Integrated circuit arrays of such sensors can be made, having multiple devices separated from each other by a physical barrier, such as a polycrystalline containment rim or trough, for preventing polymer material from one sensor from interfering with that of another.Type: GrantFiled: October 2, 2006Date of Patent: February 10, 2009Assignee: Xsilogy Inc.Inventors: Sanjay V. Patel, Bernd Fruhberger, Erno Klaassen, Todd E. Mlsna, David R. Baselt
-
Patent number: 7393740Abstract: A fixed parallel plate micro-mechanical systems (MEMS) based sensor is fabricated to allow a dissolved dielectric to flow through a porous top plate, coming to rest on a bottom plate. A post-deposition bake ensures further purity and uniformity of the dielectric layer. In one embodiment the dielectric is a polymer. In one embodiment, a support layer is deposited onto the top plate for strengthening the sensor. In another embodiment, the bottom plate is dual-layered for a narrowed gap. Integrated circuit arrays of such sensors can be made, having multiple devices separated from each other by a physical barrier, such as a polycrystalline containment rim or trough, for preventing polymer material from one sensor from interfering with that of another.Type: GrantFiled: March 20, 2007Date of Patent: July 1, 2008Assignee: Xsilogy Inc.Inventors: Sanjay V. Patel, Bernd Fruhberger, Erno Klaassen, Todd E. Mlsna, David R. Baselt
-
Publication number: 20070264741Abstract: A fixed parallel plate micro-mechanical systems (MEMS) based sensor is fabricated to allow a dissolved dielectric to flow through a porous top plate, coming to rest on a bottom plate. A post-deposition bake ensures further purity and uniformity of the dielectric layer. In one embodiment the dielectric is a polymer. In one embodiment, a support layer is deposited onto the top plate for strengthening the sensor. In another embodiment, the bottom plate is dual-layered for a narrowed gap. Integrated circuit arrays of such sensors can be made, having multiple devices separated from each other by a physical barrier, such as a polycrystalline containment rim or rough, for preventing polymer material from one sensor from Interfering with that of another.Type: ApplicationFiled: March 20, 2007Publication date: November 15, 2007Inventors: Sanjay Patel, Bernd Fruhberger, Erno Klaassen, Todd Misna, David Baselt
-
Publication number: 20070194406Abstract: A fixed parallel plate micro-mechanical systems (MEMS) based sensor is fabricated to allow a dissolved dielectric to flow through a porous top plate, coming to rest on a bottom plate. A post-deposition bake ensures further purity and uniformity of the dielectric layer. In one embodiment, the dielectric is a polymer. In one embodiment, a support layer is deposited onto the top plate for strengthening the sensor. In another embodiment, the bottom plate is dual-layered for a narrowed gap. Integrated circuit arrays of such sensors can be made, having multiple devices separated from each other by a physical barrier, such as a polycrystalline containment rim or trough, for preventing polymer material from one sensor from interfering with that of another.Type: ApplicationFiled: October 2, 2006Publication date: August 23, 2007Applicant: Xsilogy, Inc.Inventors: Sanjay Patel, Bernd Fruhberger, Erno Klaassen, Todd Mlsna, David Baselt
-
Patent number: 7115969Abstract: A fixed parallel plate micro-mechanical systems (MEMS) based sensor is fabricated to allow a dissolved dielectric to flow through a porous top plate, coming to rest on a bottom plate. A post-deposition bake ensures further purity and uniformity of the dielectric layer. In one embodiment, the dielectric is a polymer. In one embodiment, a support layer is deposited onto the top plate for strengthening the sensor. In another embodiment, the bottom plate is dual-layered for a narrowed gap. Integrated circuit arrays of such sensors can be made, having multiple devices separated from each other by a physical barrier, such as a polycrystalline containment rim or trough, for preventing polymer material from one sensor from interfering with that of another.Type: GrantFiled: September 13, 2002Date of Patent: October 3, 2006Assignee: Xsilogy, Inc.Inventors: Sanjay V. Patel, Bernd Fruhberger, Erno Klaassen, Todd E. Misna, David R. Baselt