Patents by Inventor Ervin T. Hill

Ervin T. Hill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230422639
    Abstract: A semiconductor structure, system and method. The semiconductor structure comprises: a substrate including circuitry therein; and a semiconductor stack on the substrate, the semiconductor stack including: a first electrically conductive layer including a metal and electrically coupled to the circuitry of the substrate; and a second electrically conductive layer between the substrate and the first electrically conductive layer, the second electrically conductive layer including one of a refractory metal, or a combination including silicon, carbon and nitride. The second electrically conductive layer may serve as a barrier layer between the first electrically conductive layer and the material of the underlying substrate, in this manner avoiding the formation of an intermixing region between the metal of the first electrically conductive layer and the material of the substrate during deposition of the metal.
    Type: Application
    Filed: June 27, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Shafaat Ahmed, Gowtham Sriram Jawaharram, Cyrus M. Fox, Jose L. Cruz-Campa, Kriti Agarwal, Jian Jiao, Hong Li, Bharat V. Krishnan, Ervin T. Hill, III
  • Publication number: 20210296582
    Abstract: An oxidation barrier for non-volatile memory with materials sensitive to temperature and/or cross contamination (e.g., chalcogenide materials) are described The barrier can be formed, for example, around the boundaries of a non-volatile memory tile (also known as a block or sub-array). For example, a non-volatile memory device can include an oxidation barrier on a side wall of a trench between adjacent memory tiles.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Kevin L. BAKER, Robert K. GRUBBS, Farrell M. GOOD, Ervin T. HILL, Bhumika CHHABRA, Jay S. BROWN
  • Patent number: 11069855
    Abstract: An oxidation barrier for non-volatile memory with materials sensitive to temperature and/or cross contamination (e.g., chalcogenide materials) are described The barrier can be formed, for example, around the boundaries of a non-volatile memory tile (also known as a block or sub-array). For example, a non-volatile memory device can include an oxidation barrier on a side wall of a trench between adjacent memory tiles.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 20, 2021
    Assignee: Intel Corporation
    Inventors: Kevin L. Baker, Robert K. Grubbs, Farrell M. Good, Ervin T. Hill, Bhumika Chhabra, Jay S. Brown
  • Publication number: 20210005810
    Abstract: An oxidation barrier for non-volatile memory with materials sensitive to temperature and/or cross contamination (e.g., chalcogenide materials) are described The barrier can be formed, for example, around the boundaries of a non-volatile memory tile (also known as a block or sub-array). For example, a non-volatile memory device can include an oxidation barrier on a side wall of a trench between adjacent memory tiles.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 7, 2021
    Inventors: Kevin L. BAKER, Robert K. GRUBBS, Farrell M. GOOD, Ervin T. HILL, Bhumika CHHABRA, Jay S. BROWN
  • Patent number: 10672500
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: June 2, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10650891
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: May 12, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190355418
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 21, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190341122
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 7, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10403359
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 10381101
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 13, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190189209
    Abstract: Methods, systems, and devices for non-contact electron beam probing techniques, including at one or more intermediate stages of fabrication, are described. One subset of first access lines may be grounded and coupled with one or more memory cells. A second subset of first access lines may be floating and coupled with one or more memory cells. A second access line may correspond to each first access line and may be configured to be coupled with the corresponding first access line, by way of one or more corresponding memory cells, when scanned with an electron beam. A leakage path may be determined by comparing an optical pattern generated in part by determining a brightness of each scanned access line and comparing the generated optical pattern with a second optical pattern.
    Type: Application
    Filed: March 12, 2018
    Publication date: June 20, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Publication number: 20190189237
    Abstract: Methods, systems, and devices for non-contact measurement of memory cell threshold voltage, including at one or more intermediate stages of fabrication, are described. One access line may be grounded and coupled with one or more memory cells. Each of the one or more memory cells may be coupled with a corresponding floating access line. A floating access line may be scanned with an electron beam configured to set the floating access line to a particular surface voltage at the scanned bit line, and the threshold voltage of the corresponding memory cell may be determined based on whether setting the scanned bit line to the surface voltage causes a detectable amount current to flow through the corresponding memory cell.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 20, 2019
    Inventors: Amitava Majumdar, Rajesh Kamana, Hongmei Wang, Shawn D. Lyonsmith, Ervin T. Hill, Zengtao T. Liu, Marlon W. Hug
  • Patent number: 7943463
    Abstract: A number of methods are provided for semiconductor processing. One such method includes depositing a first precursor material on a surface at a particular temperature to form an undoped polysilicon. The method also includes depositing a second precursor material on a surface of the undoped polysilicon at substantially the same temperature, wherein the undoped polysilicon serves as a seed to accelerate forming a doped polysilicon.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: May 17, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Anish Khandekar, Ervin T. Hill, Jixin Yu, Jeffrey B. Hull
  • Publication number: 20100255664
    Abstract: A number of methods are provided for semiconductor processing. One such method includes depositing a first precursor material on a surface at a particular temperature to form an undoped polysilicon. The method also includes depositing a second precursor material on a surface of the undoped polysilicon at substantially the same temperature, wherein the undoped polysilicon serves as a seed to accelerate forming a doped polysilicon.
    Type: Application
    Filed: April 2, 2009
    Publication date: October 7, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Anish Khandekar, Ervin T. Hill, Jixin Yu, Jeffrey B. Hull
  • Patent number: 7186614
    Abstract: A method of forming high performance logic transistors and high density flash transistors on a single substrate is disclosed. In one embodiment, the method comprises: forming a logic gate stack in a logic region on a substrate, forming a flash memory gate stack in a flash region on the substrate, depositing a hardmask layer over the logic gate stack and over the flash memory gate stack, patterning the hardmask in the logic region so that areas of hardmask remain where logic gates are desired, patterning the flash gate stack in the flash region to form flash memory gates, and etching the logic gate stack using the remaining hardmask as a mask to form logic gates.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: March 6, 2007
    Assignee: Intel Corporation
    Inventors: Henry S. Chao, Ervin T. Hill
  • Patent number: 7153780
    Abstract: A method of forming a thin film stack on a substrate, wherein the thin film stack includes at least a polysilicon layer and an oxide layer; forming a hardmask layer on the thin film stack; forming an anti-reflective coating (ARC) layer on the hardmask layer; patterning the ARC layer; etching the hardmask layer using the patterned ARC layer as a mask; and etching the thin film stack using the hardmask layer as a mask.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: December 26, 2006
    Assignee: Intel Corporation
    Inventors: Ervin T. Hill, Oleh P. Karpenko, Gordon T. McGarvey, Linda N. Marquez