Patents by Inventor Erwin J. Prinz

Erwin J. Prinz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170053930
    Abstract: A capacitor module includes a semiconductor substrate of a first polarity. The substrate includes a deep well of a second polarity, a first well of the first polarity over the deep well, a second well of the second polarity over at least a portion of the deep well, a first capacitor including the first well as a first electrode, a dielectric layer over the first electrode, and an electrically conductive layer as a second electrode over the dielectric layer, and a second capacitor including the second well as a first electrode, a dielectric layer over the first electrode, and an electrically conductive layer as a second electrode over the dielectric layer. The first capacitor is coupled in series with the second capacitor. A metal-oxide-metal (MOM) capacitor overlays and is coupled in parallel with the first and second capacitors.
    Type: Application
    Filed: August 18, 2015
    Publication date: February 23, 2017
    Inventors: ERWIN J. PRINZ, KURT H. JUNKER
  • Patent number: 7955877
    Abstract: Testing a non volatile memory by exposing the non volatile memory to particle radiation (e.g. xenon ions) to emulate memory cell damage due to data state changing events of a non volatile memory cell. After the exposing, the memory cells are subjected to tests and the results of the tests are used to develop reliability indications of the non volatile memory. Integrated circuits with non volatile memories of the same design are provided. Reliability representations of the integrated circuits can be made with respect to a number of data state charging events based on the exposure and subsequent tests.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: June 7, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mohammed Suhail, Ko-Min Chang, Peter J. Kuhn, Erwin J. Prinz
  • Publication number: 20100240156
    Abstract: Testing a non volatile memory by exposing the non volatile memory to particle radiation (e.g. xenon ions) to emulate memory cell damage due to data state changing events of a non volatile memory cell. After the exposing, the memory cells are subjected to tests and the results of the tests are used to develop reliability indications of the non volatile memory. Integrated circuits with non volatile memories of the same design are provided. Reliability representations of the integrated circuits can be made with respect to a number of data state charging events based on the exposure and subsequent tests.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 23, 2010
    Inventors: Mohammed Suhail, Ko-Min Chang, Peter J. Kuhn, Erwin J. Prinz
  • Patent number: 7732278
    Abstract: A split gate memory cell has a select gate, a control gate, and a charge storage structure. The select gate includes a first portion located over the control gate and a second portion not located over the control gate. In one example, the first portion of the select gate has a sidewall aligned with a sidewall of the control gate and aligned with a sidewall of the charge storage structure. In one example, the control gate has a p-type conductivity. In one example, the gate can be programmed by a hot carrier injection operation and can be erased by a tunneling operation.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: June 8, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Michael A. Sadd, Robert F. Steimle
  • Patent number: 7700439
    Abstract: A memory device is formed on a semiconductor substrate. A select gate electrode and a control gate electrode are formed adjacent to one another. One of either the select gate electrode or the control gate electrodes is recessed with respect to the other. The recess allows for a manufacturable process with which to form silicided surfaces on both the select gate electrode and the control gate electrode.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: April 20, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Ko-Min Chang, Robert F. Steimle
  • Patent number: 7491600
    Abstract: A method for making a multibit non-volatile memory cell structure is provided herein. In accordance with the method, a semiconductor substrate (101) is provided, and first and second sets of memory stacks (103, 105, 107, and 109) are formed on the substrate, each memory stack including a control gate (111) and a layer of memory material (113). A source/drain region (123) is then formed between the first and second sets of memory stacks, and a silicide layer (125) is formed over the source/drain region.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: February 17, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Gowrishankar L. Chindalore, Paul A. Ingersoll
  • Publication number: 20090042349
    Abstract: A split gate memory cell has a select gate, a control gate, and a charge storage structure. The select gate includes a first portion located over the control gate and a second portion not located over the control gate. In one example, the first portion of the select gate has a sidewall aligned with a sidewall of the control gate and aligned with a sidewall of the charge storage structure. In one example, the control gate has a p-type conductivity. In one example, the gate can be programmed by a hot carrier injection operation and can be erased by a tunneling operation.
    Type: Application
    Filed: October 20, 2008
    Publication date: February 12, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Michael A. Sadd, Robert F. Steimle
  • Patent number: 7456465
    Abstract: A split gate memory cell has a select gate, a control gate, and a charge storage structure. The select gate includes a first portion located over the control gate and a second portion not located over the control gate. In one example, the first portion of the select gate has a sidewall aligned with a sidewall of the control gate and aligned with a sidewall of the charge storage structure. In one example, the control gate has a p-type conductivity. In one example, the gate can be programmed by a hot carrier injection operation and can be erased by a tunneling operation.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: November 25, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Michael A. Sadd, Robert F. Steimle
  • Publication number: 20080261367
    Abstract: A method for making a semiconductor device having non-volatile memory cell transistors and transistors of another type is provided. In the method, a substrate is provided having an NVM region, a high voltage (HV) region, and a low voltage (LV) region. The method includes forming a gate dielectric layer on the HV and LV regions. A tunnel oxide layer is formed over the substrate in the NVM region and the gate dielectric in the HV and LV regions. A first polysilicon layer is formed over the tunnel dielectric layer and gate dielectric layer. The first polysilicon layer is patterned to form NVM floating gates. An ONO layer is formed over the first polysilicon layer. A single etch removal step is used to form gates for the HV transistors from the first polysilicon layer while removing the first polysilicon layer from the LV region.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Inventors: Erwin J. Prinz, Mehul D. Shroff
  • Patent number: 7439134
    Abstract: A method for making a semiconductor device having non-volatile memory cell transistors and transistors of another type is provided. In the method, a substrate is provided having an NVM region, a high voltage (HV) region, and a low voltage (LV) region. The method includes forming a gate dielectric layer on the HV and LV regions. A tunnel oxide layer is formed over the substrate in the NVM region and the gate dielectric in the HV and LV regions. A first polysilicon layer is formed over the tunnel dielectric layer and gate dielectric layer. The first polysilicon layer is patterned to form NVM floating gates. An ONO layer is formed over the first polysilicon layer. A single etch removal step is used to form gates for the HV transistors from the first polysilicon layer while removing the first polysilicon layer from the LV region.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: October 21, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Mehul D. Shroff
  • Patent number: 7364969
    Abstract: A semiconductor fabrication process includes forming polysilicon nanocrystals on a tunnel oxide overlying a first region of a substrate. A second dielectric is deposited overlying the first region and a second region. Without providing any protective layer overlying the second dielectric in the first region, an additional thermal oxidation step is performed without oxidizing the nanocrystals. A gate electrode film is then deposited over the second dielectric and patterned to form first and second gate electrodes. The second dielectric may be an annealed, CVD oxide. The additional thermal oxidation may include forming by dry oxidation a third dielectric overlying a third region of the semiconductor substrate. The dry oxidation produces a interfacial silicon oxide underlying the second dielectric in the second region. An upper surface of a fourth region of the substrate may then be exposed and a fourth dielectric formed on the upper surface in the fourth region.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: April 29, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Ramachandran Muralidhar
  • Patent number: 7341914
    Abstract: A method for forming a semiconductor device includes forming a first gate electrode over a semiconductor substrate, wherein the first gate electrode comprises silicon and forming a second gate electrode over the semiconductor substrate and adjacent the first gate electrode, wherein the second gate electrode comprises silicon. Nanoclusters are present in the first gate electrode. A peripheral transistor area is formed devoid of nanoclusters.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 11, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Ko-Min Chang, Robert F. Steimle
  • Patent number: 7211858
    Abstract: A split gate memory cell can include a first gate electrode and a second gate electrode. The split gate memory cell can also include a first diffusion region underlying a trench in a semiconductor substrate, wherein the trench has a sidewall, and the first diffusion region lies closer to the first gate electrode than the second gate electrode. The split gate memory cell can further include a second diffusion region lying outside the trench, wherein the second diffusion region lies closer to the second gate electrode than the first gate electrode. The split gate memory cell can still further include a charge storage layer adjacent to the sidewall of the trench, wherein the charge storage layer includes discontinuous storage elements. Methods of forming and using the split gate memory cell are also disclosed.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: May 1, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Erwin J. Prinz
  • Patent number: 7160775
    Abstract: In one embodiment, a method for discharging a semiconductor device includes providing a semiconductor substrate, forming a hole blocking dielectric layer over the semiconductor substrate, forming nanoclusters over the hole blocking dielectric layer, forming a charge trapping layer over the nanoclusters, and applying an electric field to the nanoclusters to discharge the semiconductor device. Applying the electric field may occur while applying ultraviolet (UV) light. In one embodiment, the hole blocking dielectric layer comprises forming the hole blocking dielectric layer having a thickness greater than approximately 50 Angstroms.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: January 9, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Ramachandran Muralidhar, Rajesh A. Rao, Michael A. Sadd, Robert F. Steimle, Craig T. Swift, Bruce E. White
  • Patent number: 6958265
    Abstract: A process of forming a device with nanoclusters. The process includes forming nanoclusters (e.g. silicon nanocrystals) and forming an oxidation barrier layer over the nanoclusters to inhibit oxidizing agents from oxidizing the nanoclusters during a subsequent formation of a dielectric of the device. At least a portion of the oxidation barrier layer is removed after the formation of the dielectric. In one example, the device is a memory wherein the nanoclusters are utilized as charge storage locations for charge storage transistors of the memory. In this example, the oxidation barrier layer protects the nanoclusters from oxidizing agents due to the formation of gate dielectric for high voltage transistors of the memory.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: October 25, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Robert F. Steimle, Ramachandran Muralidhar, Wayne M. Paulson, Rajesh A. Rao, Bruce E. White, Jr., Erwin J. Prinz
  • Patent number: 6898128
    Abstract: A non volatile memory (100) includes an array (102) of transistors (30) having discrete charge storage elements (40). The transistors are programmed by using a two step programming method (60) where a first step (68) is hot carrier injection (HCl) programming with low gate voltages. A second step (78) is selectively utilized on some memory cells to modify the injected charge distribution to enhance the separation of charge distribution between each memory bit within the transistor memory cell. The second step of programming is implemented without adding significant additional time to the programming operation. In one example, the first step injects electrons and the second step injects holes. The resulting distribution of the two steps removes electron charge in the central region of the storage medium.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: May 24, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Erwin J. Prinz, Gowrishankar L. Chindalore
  • Patent number: 6898129
    Abstract: A non volatile memory includes a plurality of transistors having a non conductive storage medium. The transistors are erased by injecting holes into the storage medium from both the source edge region and drain edge region of the transistor. In one example, the storage medium is made from silicon nitride isolated from the underlying substrate and overlying gate by silicon dioxide. The injection of holes in the storage medium generates two hole distributions having overlapping portions. The combined distribution of the overlapping portions is above at least a level of the highest concentration of program charge in the overlap region of the storage medium. In one example, the transistors are programmed by hot carrier injection. In some examples, the sources of groups of transistors of the memory are decoded.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: May 24, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig T. Swift, Frank K. Baker, Jr., Erwin J. Prinz, Paul A. Ingersoll
  • Patent number: 6828618
    Abstract: A semiconductor nonvolatile memory cell (30) comprising a split-gate FET device having a charge-storage transistor (38) in series with a select transistor (39). A multilayered charge-storage gate dielectric (35) extends over at least a portion of the source (32) and a first portion (341) of the channel of the FET. A select gate dielectric (36), contiguous to the charge-storage gate dielectric, extends over at least a portion of the drain (33) and a second portion (342) of the channel. A monolithic gate conductor (37) overlies both the charge-storage gate dielectric and the select gate dielectric. In an embodiment, the charge-storage gate dielectric is an ONO stack that incorporates a thin-film nitride charge-storage layer (352). The select transistor operates to inhibit over-erasure of the NVM cell. The thin-film nitride charge-storage layer extends laterally over a substantial portion of the channel so as to enhance data retention by the cell.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: December 7, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Frank K. Baker, Jr., Alexander Hoefler, Erwin J. Prinz
  • Patent number: 6816414
    Abstract: A method of discharging a charge storage location of a transistor of a non-volatile memory includes applying first and second voltages to a control gate and a well region, respectively, of the transistor. The first voltage is applied to the control gate of the transistor, wherein the control gate has at least a portion located adjacent to a select gate of the transistor. The transistor includes a charge storage location having nanoclusters disposed within dielectric material of a structure of the transistor located below the control gate. Lastly, a second voltage is applied to the well region located below the control gate. Applying the first voltage and the second voltage generates a voltage differential across the structure for discharging electrons from the nanoclusters of the charge storage location.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: November 9, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Erwin J. Prinz
  • Patent number: 6791883
    Abstract: A non-volatile memory having a thin film dielectric storage element is programmed by hot carrier injection (HCI) and erased by tunneling. The typical structure for the memory cells for this type of memory is silicon, oxide, nitride, oxide, and silicon (SONOS). The hot carrier injection provides relatively fast programming for SONOS, while the tunneling provides for erase that avoids the difficulties with the hot hole erase (HHE) type erase that generally accompanies hot carrier injection for programming. HHE is significantly more damaging to dielectrics leading to reliability issues. HHE also has a relatively narrow area of erasure that may not perfectly match the pattern for the HCI programming leaving an incomplete erasure. The tunnel erase effectively covers the entire area so there is no concern about incomplete erase. Although tunnel erase is slower than HHE, erase time is generally less critical in a system operation than is programming time.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: September 14, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig T. Swift, Jane A. Yater, Alexander B. Hoefler, Ko-Min Chang, Erwin J. Prinz, Bruce L. Morton