Patents by Inventor Esam Zaki Hamad

Esam Zaki Hamad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9175591
    Abstract: A method and system are described for the on-board treatment of a hydrocarbon-fueled internal combustion engine (ICE) exhaust gas stream to reduce CO2 emissions from the vehicle which include: a. contacting the exhaust gas stream with a CO2 sorbent capture agent on board the vehicle to produce a mixture containing modified CO2-containing sorbent and a treated exhaust gas stream with reduced CO2 content; b. separating the modified CO2-containing sorbent from the treated exhaust gas stream; c. passing the modified sorbent in heat exchange with heat from the ICE to release CO2 and regenerate the CO2 sorbent capture agent; d. recycling the regenerated CO2 sorbent for use in step (a); e. discharging the treated exhaust gas stream having a reduced CO2 content into the atmosphere; f. recovering and compressing the CO2 for temporary storage on board the vehicle.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: November 3, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Esam Zaki Hamad
  • Publication number: 20150311545
    Abstract: Embodiments of a molten metal anode solid oxide fuel cell (MMA-SOFC) system comprise a first MMA-SOFC and a second MMA-SOFC, a fuel contactor integral with the first MMA-SOFC or in fluid communication with the first MMA-SOFC, a molten metal conduit configured to deliver molten metal from a first molten metal anode to a second molten metal anode, and one or more external electric circuits, wherein a first molten metal anode is configured to oxidize molten metal to produce metal oxides and electrons, the fuel contactor is configured to reduce the metal oxides and produce metals and metal sulfides in the molten metal upon reaction with sulfur-containing fuel. The second molten metal anode is configured to oxidize the metal sulfides in the metal sulfides-containing molten metal to produce metals and electrons, and the external electric circuits are configured to generate power from the electrons produced in the first and second MMA-SOFCs.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 29, 2015
    Inventors: Stamatios Souentie, Yasmeen A. Dawsari, Esam Zaki Hamad
  • Patent number: 8821715
    Abstract: An electrochemical catalytic method for the hydrodesulfurization of a petroleum-based hydrocarbon stream is described involving a hydrogen-containing gas in an electrochemical cell employing Non Faradic Electrochemical Modification of Electrochemical Activity.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 2, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Ahmad D. Hammad, Esam Zaki Hamad, Mohamed Saber Mohamed Elanany
  • Publication number: 20140102297
    Abstract: The invention relates to methods for separating CO2 from mixed gases. A stream of mixed gases passes one side of a facilitated transport membrane, while a sweep fluid, such as steam, passes the other side of the membrane, removing the CO2. The method is especially useful in the removal of CO2 from gases produced by internal combustion engines on mobile devices.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 17, 2014
    Applicant: Saudi Arabian Oil Company
    Inventors: Esam Zaki HAMAD, Ahmed A. Bahamdan, Feras Hamad, Garba Oloriegbe Yahaya, Wajdi Issam Al-sadat
  • Publication number: 20140099245
    Abstract: A method and system are described for the on-board treatment of a hydrocarbon-fueled internal combustion engine (ICE) exhaust gas stream to reduce CO2 emissions from the vehicle which include: a. contacting the exhaust gas stream with a CO2 sorbent capture agent on board the vehicle to produce a mixture containing modified CO2-containing sorbent and a treated exhaust gas stream with reduced CO2 content; b. separating the modified CO2-containing sorbent from the treated exhaust gas stream; c. passing the modified sorbent in heat exchange with heat from the ICE to release CO2 and regenerate the CO2 sorbent capture agent; d. recycling the regenerated CO2 sorbent for use in step (a); e. discharging the treated exhaust gas stream having a reduced CO2 content into the atmosphere; f. recovering and compressing the CO2 for temporary storage on board the vehicle.
    Type: Application
    Filed: August 2, 2013
    Publication date: April 10, 2014
    Applicant: Saudi Arabian Oil Company
    Inventor: Esam Zaki HAMAD
  • Publication number: 20140056687
    Abstract: An integrated system and method for driving a CO2 compressor to densify CO2 captured from the exhaust gas stream of an internal combustion engine on board a mobile source of CO2 includes operating a turbine that is operatively connected to the power input or drive shaft of the CO2 compressor, and operatively connecting a motor-generator to the turbine for (a) recovery of any excess power when the turbine-generated power exceeds the CO2 compressor power demand and (b) providing supplemental power when the turbine-generated power is insufficient to meet the CO2 compressor power demand.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicant: Saudi Arabian Oil Company
    Inventors: Mourad Victor YOUNES, Esam Zaki HAMAD
  • Publication number: 20130333354
    Abstract: A method and system are described for on-board treatment of an exhaust stream containing CO2 emitted by a hydrocarbon-fueled internal combustion engine (ICE) used to power a vehicle in order to reduce the amount of CO2 discharged into the atmosphere which include: a. a first waste heat recovery zone on board the vehicle for receiving the high temperature exhaust gas stream, at least one heat exchanger having an inlet for receiving the hot exhaust gas stream from the ICE for passage in heat exchange relation and a discharge outlet for discharging the exhaust stream at a lower temperature, the heat recovery zone further including at least one heat recovery device for converting the waste heat from the exhaust gas to electrical and/or mechanical energy; b.
    Type: Application
    Filed: January 20, 2012
    Publication date: December 19, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventor: Esam Zaki Hamad
  • Publication number: 20130327024
    Abstract: A method and system are described for on-board treatment of an exhaust stream containing CO2 emitted by a hydrocarbon-fueled internal combustion engine (ICE) used to power a vehicle in order to reduce the amount of CO2 discharged into the atmosphere which include: a. a first waste heat recovery zone on board the vehicle for receiving the high temperature exhaust gas stream in heat exchange relation and discharging the exhaust stream at a lower temperature, the waste heat recovery zone further including at least one heat exchanger and/or heat recovery device with an inlet for receiving the hot exhaust gas stream from the ICE for passage in heat exchange relation and an outlet for the cooled exhaust gas stream, the heat exchanger further including an inlet for receiving a heat exchange fluid at a first temperature and an outlet for discharging the fluid at a second higher temperature, the heat recovery device including power transmission means; b.
    Type: Application
    Filed: January 20, 2012
    Publication date: December 12, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventor: Esam Zaki Hamad
  • Publication number: 20130298532
    Abstract: A method and system are described for on-board treatment of an exhaust stream containing CO2 emitted by a hydrocarbon-fueled internal combustion engine (ICE) used to power a vehicle in order to reduce the amount of CO2 discharged into the atmosphere which include: a.
    Type: Application
    Filed: January 20, 2012
    Publication date: November 14, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventors: Esam Zaki Hamad, Wajdi Issam Al-Sadat
  • Publication number: 20130298761
    Abstract: A method and system are described for on-board treatment of an exhaust stream containing CO2 emitted by a hydrocarbon-fueled internal combustion engine (ICE) used to power a vehicle in order to reduce the amount of CO2 discharged into the atmosphere which include: a.
    Type: Application
    Filed: January 20, 2012
    Publication date: November 14, 2013
    Applicant: SAUDI ARABIAN OIL COMPANY
    Inventor: Esam Zaki Hamad
  • Publication number: 20130247886
    Abstract: A method and apparatus for the oxy-combustion of fuel in an internal combustion engine (ICE) used to power a vehicle converts the free energy available onboard the vehicle in the form of waste heat from the engine exhaust gas stream and coolant system into electrical and/or mechanical energy which energy is used to separate oxygen from air to eliminate or significantly reduce the volume of nitrogen entering the ICE's combustion chamber, and thereby reduce NOx pollutants released into the atmosphere and increase the concentration of CO2 in the engine exhaust stream for capture using an integrated system to compress and increase the density of the captured CO2 for temporary on-board storage until it is discharged at a recovery station, e.g., during vehicle refueling.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 26, 2013
    Applicant: Saudi Arabian Oil Company
    Inventors: Esam Zaki HAMAD, Wajdi Issam AL-SADAT
  • Patent number: 8454832
    Abstract: A system and process for treating a hydrocarbon feed mixture containing aromatic compounds is provided to separate the at least one aromatic compound from the hydrocarbon feed stream is provided. A supported ionic liquid membrane, which is a microporous polymeric support containing ionic liquid in its pores, is used to selectively extract aromatics. The hydrocarbon feed mixture is directed to a retentate side of the supported ionic liquid membrane. A permeate stream is drawn from the permeate, side of the supported ionic liquid membrane, which is an aromatic-rich hydrocarbon stream. An aromatic-lean hydrocarbon stream, which is the retentate portion of the original hydrocarbon feed, remains on the retentate side of the supported ionic liquid membrane.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: June 4, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Esam Zaki Hamad, Ahmad Abdullah Bahamdan
  • Patent number: 8343336
    Abstract: A high sulfur content crude oil feedstream is treated by mixing one or more selected solvents with a sulfur-containing crude oil feedstream for a predetermined period of time, allowing the mixture to separate and form a sulfur-rich solvent-containing liquid phase and a crude oil phase of substantially lowered sulfur content, withdrawing the sulfur-rich stream and regenerating the solvent, hydrotreating the remaining sulfur-rich stream to remove or substantially reduce the sulfur-containing compounds to provide a hydrotreated low sulfur content stream, and mixing the hydrotreated stream with the separated crude oil phase to thereby provide a treated crude oil product stream of substantially reduced sulfur content and without significant volume loss.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: January 1, 2013
    Assignee: Saudi Arabian Oil Company
    Inventors: Esam Zaki Hamad, Emad Naji Al-Shafei, Ali Salim Al-Qahtani
  • Publication number: 20120298503
    Abstract: This invention relates to a method for preparing a bimetallic titania-based catalyst for use in hydrodesulfurization reactions.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Inventors: Ahmad D. HAMMAD, Esam Zaki Hamad, George Panagiotou, Christos Kordulis, Demetrios Theleritis
  • Publication number: 20120298524
    Abstract: An electrochemical catalytic method for the hydrodesulfurization of a petroleum-based hydrocarbon stream is described involving a hydrogen-containing gas in an electrochemical cell employing Non Faradic Electrochemical Modification of Electrochemical Activity.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Inventors: Ahmad D. HAMMAD, Esam Zaki Hamad, Mohamed Saber Mohamed Elanany
  • Publication number: 20120132589
    Abstract: A system and process for treating a hydrocarbon feed mixture containing aromatic compounds is provided to separate the at least one aromatic compound from the hydrocarbon feed stream is provided. A supported ionic liquid membrane, which is a microporous polymeric support containing ionic liquid in its pores, is used to selectively extract aromatics. The hydrocarbon feed mixture is directed to a retentate side of the supported ionic liquid membrane. A permeate stream is drawn from the permeate, side of the supported ionic liquid membrane, which is an aromatic-rich hydrocarbon stream. An aromatic-lean hydrocarbon stream, which is the retentate portion of the original hydrocarbon feed, remains on the retentate side of the supported ionic liquid membrane.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Inventors: Esam Zaki Hamad, Ahmad Abdullah Bahamdan
  • Publication number: 20110253595
    Abstract: A whole crude oil desulfurization system and process includes a combination of an adsorption zone and a hydroprocessing zone. This combined process and system reduces the requisite throughput for the hydroprocessing unit, conventionally a very costly and process both in terms of energy expenditures and catalyst depletion. By first contacting the whole crude oil feedstock with an adsorbent for the sulfur-containing compounds, the adsorption effluent having a relatively lower sulfur content can be collected and provided to refiners without further treatment. The adsorbates, including adsorbed organosulfur compounds, are solvent desorbed resulting in a stream containing high levels of organosulfur compounds and a solvent. Following recovery of the solvent, the volume of the sulfur-containing feedstream that remains to be desulfurized in the hydroprocessing zone is substantially less than the original amount of whole crude oil feedstock.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 20, 2011
    Inventors: Esam Zaki HAMAD, Yuguo X Wang
  • Patent number: 8002969
    Abstract: A method for upgrading a petroleum oil by a hydroprocessing reaction in which the oil is hydrogenated, includes the steps of: a. forming a liquid reaction mixture of the oil with water and an amphiphilic liquid in predetermined proportions to thereby render the oil and water miscible; b. introducing the liquid reaction mixture into an electrolytic reactor having one or more cathodic elements formed from a porous high surface area, conductive material; c. operating the reactor to form reactive hydrogen atoms whereby the oil is hydrogenated by the hydrogen atoms; d. removing the liquid mixture from the reactor; and e. separating the hydrogenated upgraded oil from the amphiphilic liquid and any remaining water, e.g., by distillation, recovering and recycling the amphiphilic liquid for use.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: August 23, 2011
    Assignee: Saudi Arabian Oil Company
    Inventor: Esam Zaki Hamad
  • Publication number: 20100264065
    Abstract: The process of the present invention is directed to the desulfurization of a sulfur-containing unrefined hydrocarbon stream with a membrane separation apparatus, where sulfur compounds are concentrated in a sulfur-rich stream on a permeate side of the membrane, and a sulfur-lean stream is recovered as a retentate. The sulfur-rich stream, which has a small volume relative to the original unrefined hydrocarbon stream, is conveyed to a subsequent desulfurization apparatus or system, such as a hydrotreating system, to recover the hydrocarbons associated with the organosulfur compounds. The stream desulfurized by conventional processes, such as hydrotreating, and the hydrocarbons desulfurized by the membrane separation apparatus may be combined to provide a low sulfur hydrocarbon effluent with minimal or no loss of the original volume.
    Type: Application
    Filed: December 23, 2008
    Publication date: October 21, 2010
    Inventors: Esam Zaki Hamad, Ahmad Abdullah Bahamdan
  • Publication number: 20090145806
    Abstract: A method for upgrading a petroleum oil by a hydroprocessing reaction in which the oil is hydrogenated, includes the steps of: a. forming a liquid reaction mixture of the oil with water and an amphiphilic liquid in predetermined proportions to thereby render the oil and water miscible; b. introducing the liquid reaction mixture into an electrolytic reactor having one or more cathodic elements formed from a porous high surface area,conductive material; c. operating the reactor to form reactive hydrogen atoms whereby the oil is hydrogenated by the hydrogen atoms; d. removing the liquid mixture from the reactor; and e. separating the hydrogenated upgraded oil from the amphiphilic liquid and any remaining water, e.g., by distillation, recovering and recycling the amphiphilic liquid for use.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Inventor: Esam Zaki Hamad