Patents by Inventor Etienne Mazoyer

Etienne Mazoyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11091419
    Abstract: Processes are described for purifying a biphenyldicarboxylic acid product containing one or more impurities, particularly at least formylbiphenylcarboxylic acid. In the processes, a mixture comprising the biphenyldicarboxylic acid product is contacted with hydrogen in the presence of a hydrogenation catalyst under conditions to selectively reduce at least part of the formylbiphenylcarboxylic acid to produce a hydrogenation effluent comprising (i) hydroxymethylbiphenylcarboxylic acid and/or methylbiphenylcarboxylic acid, and (ii) biphenylcarboxylic acid. At least a portion of the biphenyldicarboxylic acid is then separated from the hydrogenation effluent. Advantageously, a polyester product may be produced from the separated biphenyldicarboxylic acid.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: August 17, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Etienne Mazoyer, Monica D. Lotz, Constantinos P. Bokis, Javier Guzman
  • Patent number: 10994264
    Abstract: Catalysts and processes for producing catalysts for neopentane production are provided herein. A process includes reducing a catalyst precursor comprising a transition metal and an inorganic support at a temperature less than 500° C. to produce a catalyst. Also provided herein are processes to produce neopentane using the catalysts described herein and neopentane compositions produced therefrom.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 4, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Etienne Mazoyer, Kun Wang, Helge Jaensch
  • Patent number: 10870610
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: December 22, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, Steven W. Levine, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Publication number: 20200361847
    Abstract: Processes are described for purifying a biphenyldicarboxylic acid product containing one or more impurities, particularly at least formylbiphenylcarboxylic acid. In the processes, a mixture comprising the biphenyldicarboxylic acid product is contacted with hydrogen in the presence of a hydrogenation catalyst under conditions to selectively reduce at least part of the formylbiphenylcarboxylic acid to produce a hydrogenation effluent comprising (i) hydroxymethylbiphenylcarboxylic acid and/or methylbiphenylcarboxylic acid, and (ii) biphenylcarboxylic acid. At least a portion of the biphenyldicarboxylic acid is then separated from the hydrogenation effluent. Advantageously, a polyester product may be produced from the separated biphenyldicarboxylic acid.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 19, 2020
    Inventors: Etienne Mazoyer, Monica D. Lotz, Constantinos P. Bokis, Javier Guzman
  • Publication number: 20200361845
    Abstract: A process for selective oxidation of at least one dimethylbiphenyl compound to the corresponding biphenyldicarboxylic acid, where the dimethylbiphenyl compound is supplied to at least one reaction zone together with an acidic solvent, an oxidizing medium, and a catalyst comprising cobalt, manganese, and bromine. The dimethyl biphenyl compound and oxidizing medium are contacted with the catalyst in the at least one reaction zone at a temperature of 150 to 210° C. to oxidize the dimethylbiphenyl compound to the corresponding biphenyldicarboxylic acid. The supply of dimethylbiphenyl compound to the at least one reaction zone is then terminated, but the supply of oxidizing medium and catalyst is continued with the at least one reaction zone at a temperature of 150 to 210° C. A reaction product comprising at least 95 wt % of the biphenyldicarboxylic acid based on the total weight of oxidized dimethylbiphenyl compound is then recovered from the at least one reaction zone.
    Type: Application
    Filed: October 30, 2018
    Publication date: November 19, 2020
    Inventors: Etienne Mazoyer, Jarid M. Metz, Michael P. Lanci
  • Publication number: 20200290945
    Abstract: Processes are described for purifying a biphenyldicarboxylic acid product containing one or more impurities, particularly at least formylbiphenylcarboxylic acid. In the processes, at least a portion of the biphenyldicarboxylic acid product is contacted with an alcohol under conditions effective to esterify at least part of the biphenyldicarboxylic acid and at least part of the formylbiphenylcarboxylic acid and produce an esterification effluent containing biphenyldicarboxylic acid diester and formylbiphenylcarboxylic acid ester. At least part of the biphenyldicarboxylic acid diester is then separated from the esterification effluent by crystallization. Advantageously, a polyester product may be produced from the separated biphenyldicarboxylic acid diester.
    Type: Application
    Filed: June 7, 2018
    Publication date: September 17, 2020
    Inventors: Monica D. Lotz, Etienne Mazoyer, Constantinos P. Bokis, Javier Guzman
  • Patent number: 10626064
    Abstract: Processes for producing neopentane are disclosed herein. Processes comprise demethylating a C6-C8 alkane within a shell and tube reactor to produce a demethylation product including at least 10 wt % neopentane based on the weight of the demethylation product.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: April 21, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Etienne Mazoyer, Kevin B. Daly, Helge Jaensch, James R. Lattner
  • Publication number: 20190366306
    Abstract: Catalysts and processes for producing catalysts for neopentane production are provided herein. A process includes reducing a catalyst precursor comprising a transition metal and an inorganic support at a temperature less than 500° C. to produce a catalyst. Also provided herein are processes to produce neopentane using the catalysts described herein and neopentane compositions produced therefrom.
    Type: Application
    Filed: April 22, 2019
    Publication date: December 5, 2019
    Inventors: Etienne Mazoyer, Kun Wang, Helge Jaensch
  • Publication number: 20190367429
    Abstract: Processes for producing neopentane are disclosed herein. Processes comprise demethylating a C6-C8 alkane within a shell and tube reactor to produce a demethylation product including at least 10 wt % neopentane based on the weight of the demethylation product.
    Type: Application
    Filed: April 22, 2019
    Publication date: December 5, 2019
    Inventors: Etienne Mazoyer, Kevin B. Daly, Helge Jaensch, James R. Lattner
  • Patent number: 10487023
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: November 26, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Publication number: 20190225561
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.
    Type: Application
    Filed: August 18, 2017
    Publication date: July 25, 2019
    Inventors: Kun Wang, Lorenzo C. DeCaul, Steven W. Levine, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Patent number: 10351543
    Abstract: A furfural derivative having the chemical formula (1) wherein R represents hydrogen, an alkyl group or an acyl group, is prepared in a process, which process includes reacting a fructose- and/or glucose-containing starting material with a liquid hydroxyl group-containing compound of formula R—OH in the presence of an acid catalyst at a reaction temperature in the range of 150 to 300° C. to produce an acid reaction mixture including the furfural derivative of chemical formula (1), which acid reaction mixture has a pH-value of smaller than 3; neutralizing the acid reaction mixture to a pH-value in the range of 3 to 6.5 to provide a partially neutralized reaction mixture; and purifying the partially neutralized reaction mixture to recover the furfural derivative of chemical formula (1).
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 16, 2019
    Assignee: Synvina C.V.
    Inventors: Johannes Maria Franciscus Sijben, Etienne Mazoyer, Ana Sofia Vagueiro De Sousa Dias, Gerardus Johannes Maria Gruter
  • Publication number: 20190169092
    Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.
    Type: Application
    Filed: August 18, 2017
    Publication date: June 6, 2019
    Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
  • Patent number: 10266508
    Abstract: A furfural derivative having the chemical formula (1) where R represents hydrogen, an alkyl group or an acyl group, is prepared in a process, which process includes reacting a fructose- and/or glucose-containing starting material with a liquid hydroxyl group-containing compound of formula R—OH in the presence of an acid catalyst at a reaction temperature in the range of 150 to 300° C. to produce a primary acid reaction mixture including the furfural derivative of chemical formula (1); separating part of the liquid hydroxyl group-containing compound from the primary acid reaction mixture to yield a secondary acid reaction mixture; neutralizing the secondary acid reaction mixture to a pH-value of at least 3 to obtain a neutralized reaction mixture; and purifying the neutralized reaction mixture to recover the furfural derivative of chemical formula (1).
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 23, 2019
    Assignee: Synvina C.V.
    Inventors: Johannes Maria Franciscus Sijben, Etienne Mazoyer, Ana Sofia Vagueiro De Sousa Dias, Gerardus Johannes Maria Gruter
  • Publication number: 20180186761
    Abstract: A furfural derivative having the chemical formula (1) where R represents hydrogen, an alkyl group or an acyl group, is prepared in a process, which process includes reacting a fructose-and/or glucose-containing starting material with a liquid hydroxyl group-containing compound of formula R—OH in the presence of an acid catalyst at a reaction temperature in the range of 150 to 300° C. to produce a primary acid reaction mixture including the furfural derivative of chemical formula (1); separating part of the liquid hydroxyl group-containing compound from the primary acid reaction mixture to yield a secondary acid reaction mixture; neutralizing the secondary acid reaction mixture to a pH-value of at least 3 to obtain a neutralized reaction mixture; and purifying the neutralized reaction mixture to recover the furfural derivative of chemical formula (1).
    Type: Application
    Filed: July 1, 2016
    Publication date: July 5, 2018
    Inventors: Johannes Maria Franciscus Sijben, Etienne Mazoyer, Ana Sofia Vagueiro De Sousa Dias, Gerardus Johannes Maria Gruter
  • Publication number: 20180170890
    Abstract: A furfural derivative having the chemical formula (1) wherein R represents hydrogen, an alkyl group or an acyl group, is prepared in a process, which process includes reacting a fructose- and/or glucose-containing starting material with a liquid hydroxyl group-containing compound of formula R—OH in the presence of an acid catalyst at a reaction temperature in the range of 150 to 300° C. to produce an acid reaction mixture including the furfural derivative of chemical formula (1), which acid reaction mixture has a pH-value of smaller than 3; neutralizing the acid reaction mixture to a pH-value in the range of 3 to 6.5 to provide a partially neutralized reaction mixture; and purifying the partially neutralized reaction mixture to recover the furfural derivative of chemical formula (1).
    Type: Application
    Filed: July 1, 2016
    Publication date: June 21, 2018
    Inventors: Johannes Maria Franciscus Sijben, Etienne Mazoyer, Ana Sofia Vagueiro De Sousa Dias, Gerardus Johannes Maria Gruter
  • Patent number: 9643945
    Abstract: 2,5-Furandicarboxylic acid and methyl acetate are prepared in a continuous process by introducing a 5-methoxymethylfurfural-containing feedstock, an oxygen-containing gas, an oxidation catalyst and an acetic acid-containing solvent into a reactor; allowing 5-methoxymethylfurfural to react with oxygen and acetic acid in the presence of the oxidation catalyst to yield 2,5-furandicarboxylic acid as main product and methyl acetate; withdrawing 2,5-furandicarboxylic acid-containing product from the reactor and recovering 2,5-furandicarboxylic acid product; and withdrawing a vaporous stream containing methyl acetate from the reactor.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: May 9, 2017
    Assignee: FURANIX TECHNOLOGIES B.V.
    Inventors: Etienne Mazoyer, Ana Sofia Vagueiro De Sousa Dias, Benjamin McKay, Hendrikus Jacob Baars, Victor Peter Charles Vreeken, Gerardus Johannes Maria Gruter, David Lee Sikkenga
  • Patent number: 9434708
    Abstract: In a process for carrying out a reaction, a liquid reaction mixture is contacted with a catalyst that includes silica and/or a silicate, in which process a silicon compound that is soluble in the liquid reaction mixture is added to the reaction mixture before being contacted with the catalyst. The aqueous reaction mixture suitably contains water, an alcohol or a mixture thereof.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: September 6, 2016
    Assignee: FURANIX TECHNOLOGIES B.V.
    Inventors: Ana Sofia Vagueiro De Sousa Dias, Jan Cornelis Van Der Waal, Etienne Mazoyer
  • Publication number: 20160024039
    Abstract: 2,5-Furandicarboxylic acid and methyl acetate are prepared in a continuous process by introducing a 5-methoxymethylfurfural-containing feedstock, an oxygen-containing gas, an oxidation catalyst and an acetic acid-containing solvent into a reactor; allowing 5-methoxymethylfurfural to react with oxygen and acetic acid in the presence of the oxidation catalyst to yield 2,5-furandicarboxylic acid as main product and methyl acetate; withdrawing 2,5-furandicarboxylic acid-containing product from the reactor and recovering 2,5-furandicarboxylic acid product; and withdrawing a vaporous stream containing methyl acetate from the reactor.
    Type: Application
    Filed: April 4, 2014
    Publication date: January 28, 2016
    Inventors: Etienne Mazoyer, Ana Sofia Vagueiro De Sousa Dias, Benjamin McKay, Hendrikus Jacob Baars, Victor Peter Charles Vreeken, Gerardus Johannes Maria Gruter, David Lee Sikkenga
  • Patent number: 8993823
    Abstract: A process for the metathesis of olefins has been developed. The process comprises contacting a hydrocarbon feedstock with a catalyst at metathesis conditions. The catalyst comprises a tungsten compound, which contains at least one tungsten-fluoro bond, dispersed or grafted onto a support. A specific example of the catalyst is the compound WOF(CH2CMe3)3 grafted onto a silica support. The feedstock comprises a first and a second olefin wherein the second olefin has a carbon number of at least two greater than the first olefin and the product is an olefin with a carbon number intermediate between the first and second olefin. Specifically the process produces propylene from ethylene and butylene.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: March 31, 2015
    Assignee: UOP LLC
    Inventors: Mostafa Taoufik, Etienne Mazoyer, Christopher P. Nicholas, Jean-Marie Basset