Patents by Inventor Eugene Curatu

Eugene Curatu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190183636
    Abstract: An ophthalmic lens includes an optic having an anterior surface with an anterior surface radius of curvature (R1) and a posterior surface with a posterior surface radius of curvature (R2). The anterior surface radius of curvature (R1) and the posterior surface radius of curvature (R2) define a shape factor (X) (where X=(R2?R1)/(R2+R1)) that is greater than zero. The shape factor (X) corresponds to a curve defining shape factor (X) as a function of lens power (P), the curve monotonically decreasing with increased lens power (P).
    Type: Application
    Filed: December 20, 2018
    Publication date: June 20, 2019
    Inventors: John Alfred Campin, Myoung-Taek Choi, Costin Eugene Curatu, George Hunter Pettit, Xin Wei
  • Publication number: 20170333181
    Abstract: Disclosed herein is an implantable accommodative IOL device for insertion into an eye of a patient, the device comprising an active element and a passive element. The active element has a first thickness and first refractive index, and the active element comprises an electrically responsive optical lens having variable optical power. The passive element has a second thickness and a second refractive index, and the passive element and the active element are aligned along a central axis extending perpendicularly through a central region of the device. The active element and the passive element comprise individual and separate optical lenses.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Inventors: COSTIN EUGENE CURATU, JOHN ALFRED CAMPIN, JONATHAN D. McCANN, GEORGE HUNTER PETTIT
  • Patent number: 9078745
    Abstract: An ophthalmic lens includes an optical filter operable to filter out at least visible light having a wavelength less than 450 nm. The lens also includes a first diffractive structure adapted to produce a focus for visible light in a first wavelength range above 550 nm and to reduce longitudinal chromatic aberration to less than one diopter for incoming visible light in the first wavelength range. The lens also includes a second diffractive structure outside the first diffractive structure in a radial direction and adapted to produce a focus for visible light in a second wavelength range between 450 nm and 550 nm. The second diffractive structure is also adapted to reduce longitudinal chromatic aberration for incoming visible light in the second wavelength range to less than one diopter while allowing longitudinal chromatic aberration in the first wavelength range in an amount greater than the first diffractive structure.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: July 14, 2015
    Assignee: NOVARTIS AG
    Inventors: Xiaoxiao Zhang, Costin Eugene Curatu, Krishnakumar Venkateswaran, Daniel Robert Carson, Mutlu Karakelle, Xin Hong, Yueai Liu
  • Publication number: 20140194986
    Abstract: An ophthalmic lens includes an optical filter operable to filter out at least visible light having a wavelength less than 450 nm. The lens also includes a first diffractive structure adapted to produce a focus for visible light in a first wavelength range above 550 nm and to reduce longitudinal chromatic aberration to less than one diopter for incoming visible light in the first wavelength range. The lens also includes a second diffractive structure outside the first diffractive structure in a radial direction and adapted to produce a focus for visible light in a second wavelength range between 450 nm and 550 nm. The second diffractive structure is also adapted to reduce longitudinal chromatic aberration for incoming visible light in the second wavelength range to less than one diopter while allowing longitudinal chromatic aberration in the first wavelength range in an amount greater than the first diffractive structure.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: NOVARTIS AG
    Inventors: XIAOXIAO ZHANG, COSTIN EUGENE CURATU, KRISHNAKUMAR VENKATESWARAN, DANIEL ROBERT CARSON, MUTLU KARAKELLE, XIN HONG, YUEAI LIU
  • Patent number: 8709079
    Abstract: An ophthalmic lens includes an optical filter operable to filter out at least visible light having a wavelength less than 450 nm. The lens also includes a first diffractive structure adapted to produce a focus for visible light in a first wavelength range above 550 nm and to reduce longitudinal chromatic aberration to less than one diopter for incoming visible light in the first wavelength range. The lens also includes a second diffractive structure outside the first diffractive structure in a radial direction and adapted to produce a focus for visible light in a second wavelength range between 450 nm and 550 nm. The second diffractive structure is also adapted to reduce longitudinal chromatic aberration for incoming visible light in the second wavelength range to less than one diopter while allowing longitudinal chromatic aberration in the first wavelength range in an amount greater than the first diffractive structure.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 29, 2014
    Assignee: Novartis AG
    Inventors: Xiaoxiao Zhang, Costin Eugene Curatu, Krishnakumar Venkateswaran, Daniel Robert Carson, Mutlu Karakelle, Xin Hong, Yueai Liu
  • Publication number: 20110184514
    Abstract: An intraocular lens providing pseudo-accommodation includes a haptic assembly configured to position the accommodating intraocular lens; and a meniscus-shaped optic having a convex face and a concave face. The meniscus-shaped optic has an uncompressed state within an eye when the ciliary muscles are relaxed and a compressed state within the eye when the ciliary muscles are contracted. A principal plane of the meniscus-shaped optic in the uncompressed state is anterior to the principal plane of the meniscus-shaped optic in the compressed state. A spherical aberration of the meniscus-shaped optic is substantially different in the compressed state than in the uncompressed state.
    Type: Application
    Filed: December 10, 2010
    Publication date: July 28, 2011
    Inventors: Robert Dimitri Angelopoulos, Michael Hamlin, James M. Scott, Costin Eugene Curatu
  • Publication number: 20100312337
    Abstract: An ophthalmic lens includes an optical filter operable to filter out at least visible light having a wavelength less than 450 nm. The lens also includes a first diffractive structure adapted to produce a focus for visible light in a first wavelength range above 550 nm and to reduce longitudinal chromatic aberration to less than one diopter for incoming visible light in the first wavelength range. The lens also includes a second diffractive structure outside the first diffractive structure in a radial direction and adapted to produce a focus for visible light in a second wavelength range between 450 nm and 550 nm. The second diffractive structure is also adapted to reduce longitudinal chromatic aberration for incoming visible light in the second wavelength range to less than one diopter while allowing longitudinal chromatic aberration in the first wavelength range in an amount greater than the first diffractive structure.
    Type: Application
    Filed: May 14, 2010
    Publication date: December 9, 2010
    Inventors: Xiaoxiao Zhang, Costin Eugene Curatu, Krishnakumar Venkateswaran, Daniel Robert Carson, Mutlu Karakelle, Xin Hong, Yueai Liu
  • Publication number: 20070142827
    Abstract: A system and method for determining and monitoring a laser ablation volume of a cornea. The method includes sampling a beam of laser shots from a pulsed treatment laser as a reference portion. A fluence distribution of the beam reference portion is measured, and a laser beam characteristic is calculated from the measured fluence distribution. A system for determining and monitoring a laser ablation volume of a cornea includes a beamsplitter that is positioned to split a beam of laser shots from a pulsed treatment laser into a corneal portion and a reference portion. Devices are provided for measuring a fluence distribution of the beam reference portion and for calculating an ablation volume per laser shot from the measured fluence distribution.
    Type: Application
    Filed: December 20, 2005
    Publication date: June 21, 2007
    Inventors: Eugene Curatu, Richard Olmstead
  • Publication number: 20060135952
    Abstract: A system for providing improved vision to a patient having undergone an intraocular lens implantation includes a device for measuring an aberration in an eye of a patient having an intraocular lens implanted therein. Computer software is resident on a processor and is adapted to calculate a refraction profile prescription for correcting the measured aberration. An apparatus is also provided for altering a refractive index of a sector of the intraocular lens in situ according to the calculated prescription. The method includes measuring an aberration in an eye of a patient having an intraocular lens implanted therein, calculating a refraction profile prescription for correcting the measured aberration, and altering a refractive index of a sector of the intraocular lens in situ according to the calculated prescription.
    Type: Application
    Filed: December 21, 2004
    Publication date: June 22, 2006
    Inventors: Eugene Curatu, Richard Olmstead
  • Publication number: 20050243275
    Abstract: An optical wavefront sensing system includes a lenslet array positioned for receiving an incoming wavefront. Downstream of the lenslet array is positioned an image transformer, which transforms the image emerging from the lenslet array at a focal plane thereof into a real image. A sensor is positioned at a final image plane for sensing the transformed image. This sensor may comprise, but not intended to be limited to, a charge-coupled-device (CCD) camera. The method for sensing an optical wavefront includes the steps of receiving an incoming wavefront using a lenslet array and transforming an image emerging from the lenslet array at a focal plane thereof into a real image. The transformed image positioned at a final image plane is then sensed, and, in a preferred embodiment, analyzed to determine wavefront distortions.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 3, 2005
    Inventor: Eugene Curatu
  • Publication number: 20050122473
    Abstract: A calibration device for an aberroscope includes an optical element that is insertable into an optical path of a wavefront analyzer. The optical element is adapted to induce a predetermined aberration in a wavefront. The optical element, which may be transmissive or reflective, may comprise a lens optimized for a specific power and aberration; a computer-generated hologram; or a spatial light modulator. A substantially unaberrated wavefront is passed along an optical path leading to a wavefront analyzer. A predetermined aberration is induced in the unaberrated wavefront to form an aberrated wavefront using an optical element positioned in the optical path. The aberrated wavefront is then analyzed using the wavefront analyzer, which is calibrated using data generated by the wavefront analyzer from the aberrated wavefront.
    Type: Application
    Filed: November 24, 2003
    Publication date: June 9, 2005
    Inventor: Eugene Curatu
  • Patent number: 6634752
    Abstract: A unitary system for measuring both eye aberrations and corneal topography. includes a sensor for receiving wavefront data, a first optical path, and a second optical path. The first optical path includes means for introducing a collimated incident beam of radiation into the eye and for directing a wavefront exiting from the eye to the sensor as retinal wavefront data. Means are also provided for determining from the retinal wavefront data aberrations in the optical system. The second optical path includes means for introducing the incident beam onto the corneal surface and for directing a reflected beam therefrom to the sensor as corneal wavefront data. Means are additionally provided for determining from the corneal wavefront data a topography of an corneal surface. Finally, the system comprises means for switching the incident beam between the first and the second optical path.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: October 21, 2003
    Assignee: Alcon, Inc.
    Inventor: Eugene Curatu
  • Publication number: 20030169403
    Abstract: A unitary system for measuring both eye aberrations and corneal topography. includes a sensor for receiving wavefront data, a first optical path, and a second optical path. The first optical path includes means for introducing a collimated incident beam of radiation into the eye and for directing a wavefront exiting from the eye to the sensor as retinal wavefront data. Means are also provided for determining from the retinal wavefront data aberrations in the optical system. The second optical path includes means for introducing the incident beam onto the corneal surface and for directing a reflected beam therefrom to the sensor as corneal wavefront data. Means are additionally provided for determining from the corneal wavefront data a topography of an corneal surface. Finally, the system comprises means for switching the incident beam between the first and the second optical path.
    Type: Application
    Filed: March 11, 2002
    Publication date: September 11, 2003
    Inventor: Eugene Curatu
  • Patent number: 6546076
    Abstract: A system and method for high resolution digital x-ray imaging which utilizes a single imaging sensor is disclosed. In the preferred embodiment, the system utilizes a single imaging sensor and includes one or more redirecting elements to redirect a predetermined portion of light from an imaging screen onto the imaging sensor.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: April 8, 2003
    Assignee: Wuestec Medical, Inc.
    Inventors: Richard Hull, Eugene Curatu, Jack Plummer
  • Patent number: 5898520
    Abstract: A three-dimensional stereovision imaging system (20) adapted for use with a polarizing filter (22). The inventive system (20) includes a stereovision projector (24) for generating a projection (26) of alternating left and right images. A polarizer (30) polarizes electromagnetic energy corresponding to the images (26) and provides a polarized image (34) in response thereto. A twist liquid crystal screen (28) controlled by a twist liquid crystal controller (36) rotates the plane of oscillation of the polarized image (40) by a first twist angle synchronized with the alternating left and right images. Polarizing glasses (42) direct the polarized image (40) from the twist liquid crystal (28) into alternate eyes in response to the polarization state of the polarized image (40). In a specific embodiment, the polarizing glasses (42) have first (44) and second (46) eye-pieces with first (44) and second (46) linear polarizers, respectively.
    Type: Grant
    Filed: February 11, 1997
    Date of Patent: April 27, 1999
    Assignee: Raytheon Company
    Inventor: Eugene Curatu