Patents by Inventor Eugene I. Chen

Eugene I. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955374
    Abstract: A method of forming a semiconductor-on-insulator (SOI) substrate includes: forming a first dielectric layer on a first substrate; forming a buffer layer on a second substrate; forming a semiconductor cap on the buffer layer over the second substrate; forming a cleavage plane in the buffer layer; forming a second dielectric layer on the semiconductor cap after forming the cleavage plane; bonding the second dielectric layer on the second substrate to the first dielectric layer on the first substrate; performing a splitting process along the cleavage plane in the buffer layer; removing a first split buffer layer from the semiconductor cap; and removing a second split buffer layer from the second substrate.
    Type: Grant
    Filed: August 29, 2021
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Chen, Eugene I-Chun Chen, Chia-Shiung Tsai
  • Patent number: 8866828
    Abstract: The disclosed embodiments provide a system that drives an integrated display on a computer system from an electronic device. The system includes a circuit, a processor, and an application executing on the processor. The circuit may receive a display command sent from the electronic device to the computer system. The application may obtain the display command from a memory on the computer system and process the display command to control a capability of the integrated display.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 21, 2014
    Assignee: Apple Inc.
    Inventors: Adrian E. Sun, Thomas A. LaPerre, Jr., Collin L. Pieper, Eugene I. Chen
  • Patent number: 8507929
    Abstract: One or more regions of graded composition are included in a III-P light emitting device, to reduce the Vf associated with interfaces in the device. In accordance with embodiments of the invention, a semiconductor structure comprises a III-P light emitting layer disposed between an n-type region and a p-type region. A graded region is disposed between the p-type region and a GaP window layer. The aluminum composition is graded in the graded region. The graded region may have a thickness of at least 150 nm. In some embodiments, in addition to or instead of a graded region between the p-type region and the GaP window layer, the aluminum composition is graded in a graded region disposed between an etch stop layer and the n-type region.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: August 13, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Patrick N. Grillot, Rafael I. Aldaz, Eugene I. Chen, Sateria Salim
  • Publication number: 20130106874
    Abstract: The disclosed embodiments provide a system that drives an integrated display on a computer system from an electronic device. The system includes a circuit, a processor, and an application executing on the processor. The circuit may receive a display command sent from the electronic device to the computer system. The application may obtain the display command from a memory on the computer system and process the display command to control a capability of the integrated display.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Applicant: APPLE INC.
    Inventors: Adrian E. Sun, Thomas A. LaPerre, JR., Collin L. Pieper, Eugene I. Chen
  • Publication number: 20090309111
    Abstract: One or more regions of graded composition are included in a III-P light emitting device, to reduce the Vf associated with interfaces in the device. In accordance with embodiments of the invention, a semiconductor structure comprises a III-P light emitting layer disposed between an n-type region and a p-type region. A graded region is disposed between the p-type region and a GaP window layer. The aluminum composition is graded in the graded region. The graded region may have a thickness of at least 150 nm. In some embodiments, in addition to or instead of a graded region between the p-type region and the GaP window layer, the aluminum composition is graded in a graded region disposed between an etch stop layer and the n-type region.
    Type: Application
    Filed: June 16, 2008
    Publication date: December 17, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: PATRICK N. GRILLOT, RAFAEL I. ALDAZ, EUGENE I. CHEN, SATERIA SALIM
  • Patent number: 6504171
    Abstract: A light emitting device and a method of increasing the light output of the device utilize a chirped multi-well active region to increase the probability of radiative recombination of electrons and holes within the light emitting active layers of the active region by altering the electron and hole distribution profiles within the light emitting active layers of the active region (i.e., across the active region). The chirped multi-well active region produces a higher and more uniform distribution of electrons and holes throughout the active region of the device by substantially offsetting carrier diffusion effects caused by differences in electron and hole mobility by using complementary differences in layer thickness and/or layer composition within the active region.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: January 7, 2003
    Assignee: Lumileds Lighting, U.S., LLC
    Inventors: Patrick N. Grillot, Christopher P. Kocot, Michael R. Krames, Eugene I. Chen, Stephen A. Stockman, Ying-Lan Chang, Robert C. Taber
  • Patent number: 6469314
    Abstract: An LED and a method of fabricating the LED which utilize controlled oxygen (O) doping to form at least one layer of the LED having an O dopant concentration which is correlated to the dominant emission wavelength of the LED. The O dopant concentration is regulated to be higher when the LED has been configured to have a longer dominant emission wavelength. Since the dominant emission wavelength is dependent on the composition of the active layer(s) of the LED, the O dopant concentration in the layer is related to the composition of the active layer(s). The controlled O doping improves the reliability while minimizing any light output penalty due to the introduction of O dopants. In an exemplary embodiment, the LED is an AlGaInP LED that includes a substrate, an optional distributed Bragg reflector layer, an n-type confining layer, an optional n-type set-back layer, an active region, an optional p-type set-back layer, a p-type confining layer and an optional window layer.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: October 22, 2002
    Assignee: LumiLeds Lighting U.S., LLC
    Inventors: Patrick N. Grillot, Eugene I. Chen, Jen-Wu Huang, Stephen A. Stockman