Patents by Inventor Eugene M. Chow

Eugene M. Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11440307
    Abstract: Sheets of a thin film material are attached to a carrier wafer. The carrier wafer and the attached sheets of thin film material are separated to form chiplet carriers. Each chiplet carrier includes a portion of the sheets of thin film material attached to a portion of the carrier wafer. The chiplet carriers are placed on an assembly surface in a random pattern. The chiplet carriers are arranged from the random pattern to a predetermined pattern, and the portions of the thin film material are transferred from the chiplet carriers to a target substrate.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: September 13, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventors: JengPing Lu, Eugene M. Chow, Sourobh Raychaudhuri
  • Publication number: 20220199447
    Abstract: First and second chiplets are positioned along a surface to respectively cover first and second electrodes. The first electrode is activated to cause an attraction force between the first electrode and the first chiplet. The second electrode is deactivated allowing the second chiplet to rotate on the surface. While the first electrode is activated and the second electrode is deactivated, a rotation field is applied to cause the second chiplet to be oriented at a desired orientation angle, the first chiplet being prevented from rotating by the attraction force.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Inventors: JengPing Lu, Eugene M. Chow, David K. Biegelsen
  • Publication number: 20220188486
    Abstract: System and method that allow utilize machine learning algorithms to move a micro-object to a desired position are described. A sensor such as a high speed camera or capacitive sensing, tracks the locations of the objects. A dynamic potential energy landscape for manipulating objects is generated by controlling each of the electrodes in an array of electrodes. One or more computing devices are used to: estimate an initial position of a micro-object using the sensor; generate a continuous representation of a dynamic model for movement of the micro-object due to electrode potentials generated by at least some of the electrodes and use automatic differentiation and Gauss quadrature rules on the dynamic model to derive optimum potentials to be generated by the electrodes to move the micro-object to the desired position; and map the calculated optimized electrode potentials to the array to activate the electrodes.
    Type: Application
    Filed: December 14, 2020
    Publication date: June 16, 2022
    Inventors: Ion Matei, Anne Plochowietz, Saigopal Nelaturi, Johan de Kleer, Jeng Ping Lu, Lara S. Crawford, Eugene M. Chow
  • Publication number: 20220153575
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Application
    Filed: February 2, 2022
    Publication date: May 19, 2022
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Publication number: 20220153576
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Application
    Filed: February 4, 2022
    Publication date: May 19, 2022
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Patent number: 11302554
    Abstract: An assembly surface has an array of electrodes arranged such that each of a plurality of chiplets can be positioned to cover at least one of the electrodes. A field generator applies a rotation field that is orthogonal to the clamping force field applied by the electrodes. A processor is operable to determine a desired orientation angle of a first subset of the chiplets and activate one or more of the electrodes so that a second subset of the chiplets different than the first subset is kept from rotating by a clamping force field applied by the one or more of the electrodes. While the clamping force field is being applied, the processor applies the rotation field at the selected angle to cause the first subset of the chiplets to be oriented at the desired orientation angle.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: April 12, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventors: JengPing Lu, Eugene M. Chow, David K. Biegelsen
  • Patent number: 11289443
    Abstract: A secured system includes at least one semiconductor chip comprising information processing circuitry. An array of contact pads is disposed on a surface of the chip and is electrically coupled to the information processing circuitry. The secured system includes one or more semiconductor chiplets. Each chiplet comprises at least a portion of at least one hardware trusted platform module that cryptographically secures the information processing circuitry. An array of electrically conductive microsprings is disposed on a surface of the chiplet and is electrically coupled between the hardware trusted platform module and the contact pads.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: March 29, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Warren B. Jackson, Vanishree Rao, Eugene M. Chow
  • Publication number: 20220077376
    Abstract: A method of manufacturing superconductor structures includes depositing a release film on a substrate, forming a stack of films comprising an elastic material and a superconductor film, releasing a portion of the elastic material by selective removal of the release film so that portion lifts out of the substrate plane to form elastic springs. A method of manufacturing superconductor structures includes depositing a release film on a substrate, forming a stack of films comprising at least an elastic material, releasing a portion of the elastic material so that portion lifts out of a plane of the substrate to form elastic springs, and coating the elastic springs with a superconductor film.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventors: CHRISTOPHER L. CHUA, EUGENE M. CHOW
  • Patent number: 11242244
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler. The control patterns may be part of a library of control patterns.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: February 8, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Anne Plochowietz, Bradley Rupp, Jengping Lu, Julie A. Bert, Lara S. Crawford, Sourobh Raychaudhuri, Eugene M. Chow, Matthew Shreve, Sergey Butylkov
  • Publication number: 20210391525
    Abstract: A structure has a substrate, and a spring structure disposed on the substrate, the spring structure having an anchor portion disposed on the substrate, an elastic material having an intrinsic stress profile that biases a region of the elastic material to curl away from the substrate, and a superconductor film in electrical contact with a portion of the elastic material. A method of manufacturing superconductor structures includes depositing a release film on a substrate, forming a stack of films comprising an elastic material and a superconductor film, releasing a portion of the elastic material by selective removal of the release film so that portion lifts out of the substrate plane to form elastic springs.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: CHRISTOPHER L. CHUA, EUGENE M. CHOW
  • Patent number: 11201275
    Abstract: A structure has a substrate, and a spring structure disposed on the substrate, the spring structure having an anchor portion disposed on the substrate, an elastic material having an intrinsic stress profile that biases a region of the elastic material to curl away from the substrate, and a superconductor film in electrical contact with a portion of the elastic material. A method of manufacturing superconductor structures includes depositing a release film on a substrate, forming a stack of films comprising an elastic material and a superconductor film, releasing a portion of the elastic material by selective removal of the release film so that portion lifts out of the substrate plane to form elastic springs.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: December 14, 2021
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Christopher L. Chua, Eugene M. Chow
  • Publication number: 20210356951
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Publication number: 20210353865
    Abstract: A device for delivery of particles into biological tissue includes at least one conduit and a propellant source fluidically coupled to the conduit and configured to deliver a propellant into the conduit. A particle source is configured to release elongated particles into the conduit, the elongated particles having a width, w, a length, l>w. The propellant source and the conduit are configured to propel the elongated particles in a collimated particle stream toward the biological tissue. An alignment mechanism is configured to align a longitudinal axis of the elongated particles to be substantially parallel to a direction of the particle stream in an alignment region of the conduit. The aligned elongated particles are ejected from the conduit and impact the biological tissue.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: David K. Biegelsen, Eugene M. Chow, Armin R. Volkel, Ashish Pattekar, Mandana Veiseh
  • Patent number: 11148941
    Abstract: Disclosed are methods and systems of controlling the placement of micro-objects on the surface of a micro-assembler. Control patterns may be used to cause phototransistors or electrodes of the micro-assembler to generate dielectrophoretic (DEP) and electrophoretic (EP) forces which may be used to manipulate, move, position, or orient one or more micro-objects on the surface of the micro-assembler.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: October 19, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Anne Plochowietz, Eugene M. Chow, Jengping Lu, Julie A. Bert, David K. Biegelsen, Bradley Rupp, Sourobh Raychaudhuri
  • Patent number: 11079747
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating control signals in the scheme.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: August 3, 2021
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Patent number: 11077251
    Abstract: A device for delivery of particles into biological tissue includes at least one conduit and a propellant source fluidically coupled to the conduit and configured to deliver a propellant into the conduit. A particle source is configured to release elongated particles into the conduit, the elongated particles having a width, w, a length, l>w. The propellant source and the conduit are configured to propel the elongated particles in a collimated particle stream toward the biological tissue. An alignment mechanism is configured to align a longitudinal axis of the elongated particles to be substantially parallel to a direction of the particle stream in an alignment region of the conduit. The aligned elongated particles are ejected from the conduit and impact the biological tissue.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: August 3, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: David K. Biegelsen, Eugene M. Chow, Armin R. Volkel, Ashish Pattekar, Mandana Veiseh
  • Publication number: 20210178758
    Abstract: Disclosed herein is a material ejector (e.g., print head) geometry having alignment of material inlet channels in-line with microchannels, symmetrically disposed in a propellant flow, to obtain smooth, well-controlled, trajectories in a ballistic aerosol ejection implementation. Propellant (e.g., pressurized air) is supplied from above and below (or side-by-side) a microchannel array plane. Obviating sharp (e.g., 90 degree) corners permits propellant to flow smoothly from macroscopic source into the microchannels.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Armin R. Volkel, Eugene M. Chow
  • Publication number: 20210162727
    Abstract: Sheets of a thin film material are attached to a carrier wafer. The carrier wafer and the attached sheets of thin film material are separated to form chiplet carriers. Each chiplet carrier includes a portion of the sheets of thin film material attached to a portion of the carrier wafer. The chiplet carriers are placed on an assembly surface in a random pattern. The chiplet carriers are arranged from the random pattern to a predetermined pattern, and the portions of the thin film material are transferred from the chiplet carriers to a target substrate.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: JengPing Lu, Eugene M. Chow, Sourobh Raychaudhuri
  • Patent number: 10933636
    Abstract: Disclosed herein is a material ejector (e.g., print head) geometry having alignment of material inlet channels in-line with microchannels, symmetrically disposed in a propellant flow, to obtain smooth, well-controlled, trajectories in a ballistic aerosol ejection implementation. Propellant (e.g., pressurized air) is supplied from above and below (or side-by-side) a microchannel array plane. Obviating sharp (e.g., 90 degree) corners permits propellant to flow smoothly from macroscopic source into the microchannels.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 2, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Armin R. Volkel, Eugene M. Chow
  • Patent number: 10926521
    Abstract: Sheets of a thin film material are attached to a carrier wafer. The carrier wafer and the attached sheets of thin film material are separated to form chiplet carriers. Each chiplet carrier includes a portion of the sheets of thin film material attached to a portion of the carrier wafer. The chiplet carriers are placed on an assembly surface in a random pattern. The chiplet carriers are arranged from the random pattern to a predetermined pattern, and the portions of the thin film material are transferred from the chiplet carriers in parallel to a target substrate.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 23, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: JengPing Lu, Eugene M. Chow, Sourobh Raychaudhuri