Patents by Inventor Evan Graham

Evan Graham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190232427
    Abstract: An additive manufacturing system includes a laser device, a build plate, and a scanning device. The laser device is configured to generate a laser beam with a variable intensity. The build plate is configured to support a powdered build material. The scanning device is configured to selectively direct the laser beam across the powdered build material to generate a melt pool on the build plate. The scanning device is configured to oscillate a spatial position of the laser beam while the laser device simultaneously modulates the intensity of the laser beam to facilitate reducing spatter and to facilitate reducing a temperature of the melt pool to reduce overheating of the melt pool.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 1, 2019
    Inventors: Subhrajit Roychowdhury, Matthias Hoebel, Michael Evans Graham, Robert John Filkins, Felix Martin Gerhard Roerig, Donnell Eugene Crear, Prabhjot Singh
  • Patent number: 10338569
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 2, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Patent number: 10322353
    Abstract: Present embodiments are directed toward a dynamic control system for an amusement park ride. The system includes a game server that generates game data describing movement of a virtual vehicle through a virtual environment; a programmable logic controller (PLC) configured to conditionally execute instructions of a dynamic ride profile relative to one or more stored limits to operate physical actions of the ride vehicle; and a dynamic ride profile server communicatively coupled to the game server and the PLC. The dynamic ride profile server is configured to: receive input data, sensor data, and the game data; provide the received data as inputs to one or more physical models to generate a portion of a dynamic ride profile based on the movement of the virtual vehicle through the virtual environment; and provide the portion of the dynamic ride profile to the PLC for conditional execution.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: June 18, 2019
    Assignee: Universal City Studios LLC
    Inventors: Patrick J. Goergen, Danielle Holstine, Patrick Boyle, Jack Joseph Colletta, Martin Evan Graham
  • Patent number: 10307823
    Abstract: A method for repairing a structure in an additive manufacturing system is provided. The method includes detecting a defect in a structure formed using an additive manufacturing process, the structure including a first surface that faces a powder containing region and a second surface that faces a substantially powder free region, generating a supplemental scan path that covers at least a portion of the structure based on a location of the detected defect, and controlling a consolidation device, based on the supplemental scan path, to remedy the defect.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: June 4, 2019
    Assignee: General Electric Company
    Inventors: John Broddus Deaton, Jr., Thomas Charles Adcock, William Monaghan, John Joseph Madelone, Jr., Michael Evans Graham
  • Publication number: 20190163167
    Abstract: Some embodiments facilitate creation of an industrial asset item via an additive manufacturing process wherein motion is provided between a build plate and a print arm. A correction engine may receive, from an industrial asset item definition data store containing at least one electronic record defining the industrial asset item, the data defining the industrial asset item. A correction engine computer processor may then correct the motion provided between the build plate and the print arm such that the motion deviates from a path indicated by the data defining the industrial asset item. The three-dimension printer may be a rotary printer such that the build plate rotates about a vertical axis and moves along the vertical axis during printing. In these cases, a pre-compensation algorithm may be applied to correct the motion provided between the build plate and the print arm before transmitting data to the three-dimensional additive manufacturing printer.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Subhrajit ROYCHOWDHURY, Brian McCARTHY, Michael TUCKER, David C BOGDAN, JR., Michael Evans GRAHAM, William CARTER, Victor OSTROVERKHOV
  • Publication number: 20190143409
    Abstract: A method for repairing a structure in an additive manufacturing system is provided. The method includes detecting a defect in a structure formed using an additive manufacturing process, the structure including a first surface that faces a powder containing region and a second surface that faces a substantially powder free region, generating a supplemental scan path that covers at least a portion of the structure based on a location of the detected defect, and controlling a consolidation device, based on the supplemental scan path, to remedy the defect.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 16, 2019
    Inventors: John Broddus Deaton, JR., Thomas Charles Adcock, William Monaghan, John Joseph Madelone, JR., Michael Evans Graham
  • Publication number: 20190143408
    Abstract: In one aspect, an additive manufacturing system is provided. The additive manufacturing system includes a build platform, a first plurality of particles positioned on the build platform, and a particle containment system positioned on the build platform. The particle containment system includes a particle containment wall. The particle containment wall at least partially surrounds the first plurality of particles and includes a second plurality of particles consolidated together. The particle containment wall includes a top end spaced apart from the build platform, an inner face positioned against the first plurality of particles and extending between the build platform and the top end, and an outer face that faces a substantially particle-free region, the outer face positioned opposite the inner face and extending between the build platform and the top end.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 16, 2019
    Inventors: Michael Evans Graham, William Monaghan, Thomas Charles Adcock, Andrew J. Martin, John Joseph Madelone, Jr., David Charles Bogdan, Jr., John Broddus Deaton, Jr., William Thomas Carter
  • Publication number: 20190146436
    Abstract: Methods, apparatus, systems and articles of manufacture are disclosed to generate a workscope. An example apparatus includes a workscope mapper, workscope strategy analyzer, and workscope selector. The workscope strategy analyzer is to evaluate each of the plurality of workscopes using dynamic optimization to determine a maintenance value and benefit to an asset associated with each workscope based on a stage in a remaining life of a constraint at which the evaluation is executed and a state of the asset. The dynamic optimization is to determine a prediction of the maintenance value based on a probability of a future change in state and associated workscope value until the end of life of the constraint. The maintenance value, used to select a workscope from the plurality of workscopes, is to be determined by the dynamic optimization as a sum of the associated workscope values until the end of life of the constraint.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 16, 2019
    Inventors: Victor Manuel Perez Zarate, Luis Gabriel De Alba Rivera, Brock Estel Osborn, Katherine Tharp Nowicki, Michael William Bailey, Michael Evans Graham
  • Patent number: 10286484
    Abstract: An additive manufacturing system including a consolidation device, a build platform, an optical detector, and a controller is provided. The consolidation device is configured to form a build layer of a component. The build platform is configured to rotate about a build platform rotation axis extending along a first direction. The optical detector is configured to detect locations of at least two alignment marks. The controller is configured to receive locations of the at least two alignment marks from the optical detector. The controller is also configured to determine the locations of the build platform rotation axis and a build platform rotation center point based on a comparison between the at least two alignment marks, wherein the build platform rotation center point lies along the build platform rotation axis. The controller is further configured to control the consolidation device to consolidate a plurality of particles on the build platform.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: May 14, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Brian Scott McCarthy, Subhrajit Roychowdhury, Mohammed Shalaby, Victor Petrovich Ostroverkhov, Michael Evans Graham, William Thomas Carter
  • Publication number: 20190113907
    Abstract: Some embodiments facilitate creation of an industrial asset item via a rotary additive manufacturing process. For example, a build plate may rotate about a vertical axis and move, relative to a print arm, along the vertical axis during printing. An industrial asset item definition data store may contain at least one electronic record defining the industrial asset item. A frame creation computer processor may slice the data defining the industrial asset item to create a series of two-dimensional, locally linear frames helically arranged as a spiral staircase of steps (and each step may be oriented normal to the vertical axis. Indications of the series of two-dimensional frames may then be output to be provided to a rotary three-dimensional printer.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Inventors: Subhrajit ROYCHOWDHURY, Brian McCARTHY, Michael TUCKER, David C. BOGDAN, JR., Michael Evans GRAHAM, William CARTER
  • Publication number: 20190054530
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Publication number: 20190054566
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Publication number: 20190056714
    Abstract: A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Inventors: Donnell Eugene Crear, Michael Evans Graham, Tao Jia, Mohammed Mounir Shalaby
  • Publication number: 20190033828
    Abstract: A method of manufacturing a component using an additive manufacturing system is provided. The method includes providing a build file on a controller of the additive manufacturing system. The build file includes at least one generating function, at least one seed value, and at least one function parameter. The method also includes generating a curve that corresponds to the component based on the at least one generating function, the at least one seed value, and the at least one function parameter. The method further includes positioning a material on a surface. The method further includes determining, using the controller, a plurality of set points for a consolidation device. The plurality of set points are located along the curve. The method also includes operating the consolidation device of the additive manufacturing system to consolidate the material.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 31, 2019
    Inventors: John Joseph Madelone, JR., Thomas Charles Adcock, Justin John Gambone, JR., Michael Evans Graham, Subhrajit Roychowdhury, Daniel J. Erno
  • Publication number: 20190016053
    Abstract: A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 17, 2019
    Inventors: Michael Evans Graham, John Broddus Deaton, Mark Allen Cheverton, Thomas Charles Adcock, Andrew David Deal, Marshall Gordon Jones, Prabhjot Singh
  • Publication number: 20190001658
    Abstract: A computer-enabled device for dynamically creating or modifying at least a portion of an additive manufacturing build for making a part is provided. The device is in direct or indirect communication with one or more additive manufacturing machines that use one or more build parameters. The device is configured to analyze a plurality of build information pertaining to the part. The device is also configured to assess whether one or more differences between the pre-existing data and the non-pre-existing data will result in a deviation from, or improvement to, the part, the additive manufacturing build, or both and automatically create or modify, one or more of the build parameters of the part, at least a portion of the additive manufacturing build, or a combination thereof, based on the assessment of the one more differences.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 3, 2019
    Inventors: Harry Kirk Mathews, JR., Michael Evans Graham, Pinghai Yang, Tyler Nelson
  • Publication number: 20180281113
    Abstract: An additive manufacturing system configured to manufacture a component including scan strategies for efficient utilization of one or more laser arrays. The additive manufacturing system includes at least one laser device, each configured as a laser array, and a build platform. Each laser device is configured to generate a plurality of laser beams. The component is disposed on the build platform. The at least one laser device is configured to sweep across the component and the build platform in at least one of a radial direction, a circumferential direction or a modified zig-zag pattern and simultaneously operate the one or more of the plurality of individually operable laser beams corresponding to a pattern of the layer of a build to generate successive layers of a melted powdered material on the component and the build platform corresponding to the pattern of the layer of the build. A method of manufacturing a component with the additive manufacturing system is also disclosed.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: William Thomas Carter, Jason Harris Karp, Justin John Gambone, JR., Lang Yuan, David Charles Bogdan, JR., Victor Petrovish Ostroverkhov, Marshall Gordon Jones, Michael Evans Graham, Kevin George Harding
  • Patent number: 10086567
    Abstract: A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 2, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Michael Evans Graham, John Broddus Deaton, Jr., Mark Allen Cheverton, Thomas Charles Adcock, Andrew David Deal, Marshall Gordon Jones, Prabhjot Singh
  • Publication number: 20180250770
    Abstract: A controller for use in an additive manufacturing system including at least one laser device configured to generate at least one melt pool in powdered material including a processing device and a memory device. The controller is configured to generate at least one control signal to control a power output of the at least one laser device throughout at least one scan path across the layer of powdered material, the scan path generated at least partially based on a functional relationship between a plurality of points of a generating path and each point of a plurality of points of the scan path. The controller is further configured to generate a non-uniform energy intensity profile for the scan path, and transmit the control signal to the laser device to emit at least one laser beam to generate at least one melt pool.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 6, 2018
    Inventors: Michael Evans Graham, Lang Yuan
  • Publication number: 20180193955
    Abstract: A component is fabricated in a powder bed by moving a laser array across the powder bed. The laser array includes a plurality of laser devices. The power output of each laser device of the plurality of laser devices is independently controlled. The laser array emits a plurality of energy beams from a plurality of selected laser devices of the plurality of laser devices to generate a melt pool in the powder bed. A non-uniform energy intensity profile is generated by the plurality of selected laser devices. The non-uniform energy intensity profile facilitates generating a melt pool that has a predetermined characteristic.
    Type: Application
    Filed: January 9, 2017
    Publication date: July 12, 2018
    Inventors: Jason Harris Karp, Justin John Gambone, JR., Michael Evans Graham, David Charles Bogdan, JR., Victor Petrovich Ostroverkhov, William Thomas Carter, Harry Kirk Mathews, JR., Kevin George Harding, Jinjie Shi, Marshall Gordon Jones, James William Sears