Patents by Inventor Evgueniy Nikolov Stefanov

Evgueniy Nikolov Stefanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11848553
    Abstract: An integrated electro-static discharge (ESD) device has a set of metal layers. Each metal layer in the set has one or more first-terminal metal features interleaved with one or more second-terminal metal features in a lateral direction, and at least one first-terminal metal feature in a metal layer of the set overlaps in a normal direction at least one second-terminal metal feature in an adjacent metal layer of the set. By overlapping metal features in the normal direction, capacitance can be added to the ESD device, which improves its operating characteristics, without increasing the layout size of the ESD device.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: December 19, 2023
    Assignee: NXP USA, Inc.
    Inventors: Evgueniy Nikolov Stefanov, Pascal Kamel Abouda
  • Patent number: 11640964
    Abstract: There is disclosed herein an SOI IC comprising an integrated capacitor comprising a parallel arrangement of a metal-insulator-metal, MIM, capacitor, a second capacitor, a third capacitor, and a fourth capacitor: wherein the second capacitor comprises as plates the substrate and a one of a plurality of semiconductor layers having an n-type doping, and comprises the buried oxide layer as dielectric; the third capacitor comprises as plates the polysilicon layer and a further one of a plurality of semiconductor layers having an n-type doping, and comprises an insulating layer between the plurality of semiconductor layers and the metallisation stack as dielectric; and the fourth capacitor comprises as plates the polysilicon plug and at least one of the plurality of semiconductor layers and comprises the oxide-lining as dielectric, wherein the oxide lining and the polysilicon plug form part of a lateral isolation (DTI) structure.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: May 2, 2023
    Assignee: NXP USA, Inc.
    Inventors: Evgueniy Nikolov Stefanov, Pascal Kamel Abouda
  • Publication number: 20220173136
    Abstract: There is disclosed herein an SOI IC comprising an integrated capacitor comprising a parallel arrangement of a metal-insulator-metal, MIM, capacitor, a second capacitor, a third capacitor, and a fourth capacitor: wherein the second capacitor comprises as plates the substrate and a one of a plurality of semiconductor layers having an n-type doping, and comprises the buried oxide layer as dielectric; the third capacitor comprises as plates the polysilicon layer and a further one of a plurality of semiconductor layers having an n-type doping, and comprises an insulating layer between the plurality of semiconductor layers and the metallisation stack as dielectric; and the fourth capacitor comprises as plates the polysilicon plug and at least one of the plurality of semiconductor layers and comprises the oxide-lining as dielectric, wherein the oxide lining and the polysilicon plug form part of a lateral isolation (DTI) structure.
    Type: Application
    Filed: October 19, 2021
    Publication date: June 2, 2022
    Inventors: Evgueniy Nikolov Stefanov, Pascal Kamel Abouda
  • Publication number: 20220158444
    Abstract: An integrated electro-static discharge (ESD) device has a set of metal layers. Each metal layer in the set has one or more first-terminal metal features interleaved with one or more second-terminal metal features in a lateral direction, and at least one first-terminal metal feature in a metal layer of the set overlaps in a normal direction at least one second-terminal metal feature in an adjacent metal layer of the set. By overlapping metal features in the normal direction, capacitance can be added to the ESD device, which improves its operating characteristics, without increasing the layout size of the ESD device.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 19, 2022
    Inventors: Evgueniy Nikolov Stefanov, Pascal Kamel Abouda
  • Patent number: 10727221
    Abstract: An ESD protection device for protecting an integrated circuit against an ESD event includes a first terminal coupled to an input/output pad of the IC, a second terminal coupled to a reference or ground voltage, a silicon-controlled rectifier device having an anode connected to the first terminal and a cathode connected to the reference or ground voltage, and a pnp transistor coupled in parallel with the SCR device. The pnp transistor has an emitter coupled to the first terminal, a collector coupled to the second terminal, and a base coupled to a gate of the SCR. The pnp transistor includes a contact region formed at a first side of a substrate, the first contact region being surrounded by an STI layer formed at the first side of the substrate. An insulation structure is formed at an intersection of the first contact region and the STI layer.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: July 28, 2020
    Assignee: NXP USA, Inc.
    Inventors: Rouying Zhan, Jean-Philippe Laine, Evgueniy Nikolov Stefanov, Alain Salles, Patrice Besse
  • Patent number: 10629715
    Abstract: An electrostatic discharge protection device includes a substrate, first and second emitter regions disposed in the substrate, laterally spaced from one another on a side of the substrate, and having opposite conductivity types, and first and second base regions having opposite conductivity types and in which the first and second emitter regions are disposed in a thyristor arrangement, respectively. The first base region includes a buried doped layer that extends under the second base region. Each of the buried doped layer and the second base region includes a respective non-uniformity in dopant concentration profile. A spacing between the buried doped layer and the second base region at the respective non-uniformities establishes a breakdown trigger voltage for the thyristor arrangement.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 21, 2020
    Assignee: NXP USA, Inc.
    Inventor: Evgueniy Nikolov Stefanov
  • Publication number: 20200013885
    Abstract: An electrostatic discharge protection device includes a substrate, first and second emitter regions disposed in the substrate, laterally spaced from one another on a side of the substrate, and having opposite conductivity types, and first and second base regions having opposite conductivity types and in which the first and second emitter regions are disposed in a thyristor arrangement, respectively. The first base region includes a buried doped layer that extends under the second base region. Each of the buried doped layer and the second base region includes a respective non-uniformity in dopant concentration profile. A spacing between the buried doped layer and the second base region at the respective non-uniformities establishes a breakdown trigger voltage for the thyristor arrangement.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 9, 2020
    Inventor: Evgueniy Nikolov Stefanov
  • Publication number: 20190312026
    Abstract: An ESD protection device for protecting an integrated circuit (IC) against an ESD event includes a first terminal coupled to an input/output pad of the IC, a second terminal coupled to a reference or ground voltage, a silicon-controlled rectifier (SCR) device having an anode connected to the first terminal and a cathode connected to the reference or ground voltage, and a pnp transistor coupled in parallel with the SCR device. The pnp transistor has an emitter coupled to the first terminal, a collector coupled to the second terminal, and a base coupled to a gate of the SCR. The pnp transistor includes a contact region formed at a first side of a substrate, the first contact region being surrounded by an STI layer formed at the first side of the substrate. An insulation structure is formed at an intersection of the first contact region and the STI layer.
    Type: Application
    Filed: February 27, 2019
    Publication date: October 10, 2019
    Inventors: Rouying ZHAN, Jean-Philippe LAINE, Evgueniy Nikolov STEFANOV, Alain SALLES, Patrice BESSE
  • Patent number: 10411004
    Abstract: Semiconductor device and methods for making the devices includes a buried layer of a first conductivity in a substrate in which a distance between two adjacent ends can be selected to achieve a desired breakdown voltage. A deep well having a first doping concentration of a second conductivity type is implanted in an epitaxial layer above the two adjacent ends of the buried layer. A patterned doped region is formed in the deep well and extending into the epitaxial layer above and separated a distance from the two adjacent ends of the buried lay. The patterned doped region has a second doping concentration of the second conductivity type that is greater than the first doping concentration.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: September 10, 2019
    Assignee: NXP USA, Inc.
    Inventors: Evgueniy Nikolov Stefanov, Patrice Besse, Jean Philippe Laine
  • Patent number: 10348296
    Abstract: A body-control-device for a bi-directional transistor, said bi-directional transistor having a first-transistor-channel-terminal, a second-transistor-channel-terminal, a transistor-control-terminal and a transistor-body-terminal. The body-control-device comprises a body-control-terminal connectable to the transistor-body-terminal of the bi-directional transistor, a first-body-channel-terminal connectable to the first-transistor-channel-terminal of the bi-directional transistor, a second-body-channel-terminal connectable to the second-transistor-channel-terminal of the bi-directional transistor, a negative-voltage-source and a switching-circuit configured to selectively provide an offset-first-circuit-path between the first-body-channel-terminal and the body-control-terminal, wherein the offset-first-circuit-path includes the negative-voltage-source such that it provides a negative voltage bias between the body-control-terminal and the first-body-channel-terminal.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 9, 2019
    Assignee: NXP USA, Inc.
    Inventors: Evgueniy Nikolov Stefanov, Philippe Dupuy
  • Patent number: 10211822
    Abstract: Embodiments of a transistor control device for controlling a bi-directional power transistor are disclosed. In an embodiment, a transistor control device for controlling a bi-directional power transistor includes a resistor connectable to a body terminal of the bi-directional power transistor and a transistor body switch circuit connectable to the resistor, to a drain terminal of the bi-directional power transistor, and to a source terminal of the bi-directional power transistor. The transistor body switch circuit includes switch devices and alternating current (AC) capacitive voltage dividers connected to control terminals of the switch devices. The AC capacitive voltage dividers are configured to control the switch devices to switch a voltage of the body terminal of the bi-directional power transistor as a function of a voltage between the drain terminal of the bi-directional power transistor and the source terminal of the bi-directional power transistor.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 19, 2019
    Assignee: NXP USA, Inc.
    Inventors: Evgueniy Nikolov Stefanov, Laurent Guillot
  • Publication number: 20190013807
    Abstract: A body-control-device for a bi-directional transistor, said bi-directional transistor having a first-transistor-channel-terminal, a second-transistor-channel-terminal, a transistor-control-terminal and a transistor-body-terminal. The body-control-device comprises a body-control-terminal connectable to the transistor-body-terminal of the bi-directional transistor, a first-body-channel-terminal connectable to the first-transistor-channel-terminal of the bi-directional transistor, a second-body-channel-terminal connectable to the second-transistor-channel-terminal of the bi-directional transistor, a negative-voltage-source and a switching-circuit configured to selectively provide an offset-first-circuit-path between the first-body-channel-terminal and the body-control-terminal, wherein the offset-first-circuit-path includes the negative-voltage-source such that it provides a negative voltage bias between the body-control-terminal and the first-body-channel-terminal.
    Type: Application
    Filed: January 3, 2018
    Publication date: January 10, 2019
    Inventors: Evgueniy Nikolov STEFANOV, Philippe DUPUY
  • Publication number: 20180342496
    Abstract: Semiconductor device and methods for making the devices includes a buried layer of a first conductivity in a substrate in which a distance between two adjacent ends can be selected to achieve a desired breakdown voltage. A deep well having a first doping concentration of a second conductivity type is implanted in an epitaxial layer above the two adjacent ends of the buried layer. A patterned doped region is formed in the deep well and extending into the epitaxial layer above and separated a distance from the two adjacent ends of the buried lay. The patterned doped region has a second doping concentration of the second conductivity type that is greater than the first doping concentration.
    Type: Application
    Filed: April 19, 2018
    Publication date: November 29, 2018
    Inventors: Evgueniy Nikolov Stefanov, Patrice Besse, Jean Philippe Laine
  • Publication number: 20170338809
    Abstract: Embodiments of a transistor control device for controlling a bi-directional power transistor are disclosed. In an embodiment, a transistor control device for controlling a bi-directional power transistor includes a resistor connectable to a body terminal of the bi-directional power transistor and a transistor body switch circuit connectable to the resistor, to a drain terminal of the bi-directional power transistor, and to a source terminal of the bi-directional power transistor. The transistor body switch circuit includes switch devices and alternating current (AC) capacitive voltage dividers connected to control terminals of the switch devices. The AC capacitive voltage dividers are configured to control the switch devices to switch a voltage of the body terminal of the bi-directional power transistor as a function of a voltage between the drain terminal of the bi-directional power transistor and the source terminal of the bi-directional power transistor.
    Type: Application
    Filed: May 22, 2017
    Publication date: November 23, 2017
    Inventors: Evgueniy Nikolov Stefanov, Laurent Guillot
  • Patent number: 6989572
    Abstract: In one embodiment, an SCR device (41) includes a p+ wafer (417), a p? layer (416), an n+ buried layer (413) and an n? layer (414). P? wells (411,421) are formed in the n? layer (414). N+ regions (412,422) and p+ regions (415,425) are formed in the p? wells (411,421). A first ohmic contact (431) couples one n+ regions (422) to one p+ region (425). A second ohmic contact (433) couples another n+ region (412) to another p+ region (415) to provide physically and electrically symmetrical low-voltage p-n-p-n silicon controlled rectifiers. A deep isolation trench (419) surrounding the SCR device (41) and dopant concentration profiles provide a low capacitance SCR design for protecting high frequency integrated circuits from electrostatic discharges.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: January 24, 2006
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Evgueniy Nikolov Stefanov, Rene Escoffier