Patents by Inventor Ezra S. Fishman

Ezra S. Fishman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210085499
    Abstract: Gastrointestinal implants can be used to secure thin-walled sleeves, restrictor plates, and other devices within the gastrointestinal tract. An example implant includes three elements: a stomach anchor to resist distally oriented forces; a duodenal anchor to resist proximally oriented forces; and a connector element to keep the stomach anchor fixed relative to the stomach anchor. The implant is inserted into the gastrointestinal tract with a delivery device that holds the implant in a compressed state for minimally invasive delivery until the implant is positioned properly. Upon releasing from the delivery device, the implant expands to a relaxed state across the pylorus, allowing prongs that extending outward from the stomach and duodenal anchors to engage tissue in the gastrointestinal tract. The deployed implant may also include a thin-walled sleeve that extends into the intestine from the stomach anchor, duodenal anchor, or connector element.
    Type: Application
    Filed: May 18, 2020
    Publication date: March 25, 2021
    Inventors: Sean K. HOLMES, Barry MAXWELL, Ezra S. FISHMAN
  • Publication number: 20190000658
    Abstract: Gastrointestinal implants can be used to secure thin-walled sleeves, restrictor plates, and other devices within the gastrointestinal tract. An example implant includes three elements: a stomach anchor to resist distally oriented forces; a duodenal anchor to resist proximally oriented forces; and a connector element to keep the stomach anchor fixed relative to the stomach anchor. The implant is inserted into the gastrointestinal tract with a delivery device that holds the implant in a compressed state for minimally invasive delivery until the implant is positioned properly. Upon releasing from the delivery device, the implant expands to a relaxed state across the pylorus, allowing prongs that extending outward from the stomach and duodenal anchors to engage tissue in the gastrointestinal tract. The deployed implant may also include a thin-walled sleeve that extends into the intestine from the stomach anchor, duodenal anchor, or connector element.
    Type: Application
    Filed: January 29, 2018
    Publication date: January 3, 2019
    Inventors: Sean K. HOLMES, Barry MAXWELL, Ezra S. FISHMAN
  • Publication number: 20140296770
    Abstract: Gastrointestinal implants can be used to secure thin-walled sleeves, restrictor plates, and other devices within the gastrointestinal tract. An example implant includes three elements: a stomach anchor to resist distally oriented forces; a duodenal anchor to resist proximally oriented forces; and a connector element to keep the stomach anchor fixed relative to the stomach anchor. The implant is inserted into the gastrointestinal tract with a delivery device that holds the implant in a compressed state for minimally invasive delivery until the implant is positioned properly. Upon releasing from the delivery device, the implant expands to a relaxed state across the pylorus, allowing prongs that extending outward from the stomach and duodenal anchors to engage tissue in the gastrointestinal tract. The deployed implant may also include a thin-walled sleeve that extends into the intestine from the stomach anchor, duodenal anchor, or connector element.
    Type: Application
    Filed: May 13, 2014
    Publication date: October 2, 2014
    Applicant: Gl Dynamics, Inc.
    Inventors: Sean K. Holmes, Barry Maxwell, Ezra S. Fishman
  • Publication number: 20100305590
    Abstract: Gastrointestinal implants can be used to secure thin-walled sleeves, restrictor plates, and other devices within the gastrointestinal tract. An example implant includes three elements: a stomach anchor to resist distally oriented forces; a duodenal anchor to resist proximally oriented forces; and a connector element to keep the stomach anchor fixed relative to the stomach anchor. The implant is inserted into the gastrointestinal tract with a delivery device that holds the implant in a compressed state for minimally invasive delivery until the implant is positioned properly. Upon releasing from the delivery device, the implant expands to a relaxed state across the pylorus, allowing prongs that extending outward from the stomach and duodenal anchors to engage tissue in the gastrointestinal tract. The deployed implant may also include a thin-walled sleeve that extends into the intestine from the stomach anchor, duodenal anchor, or connector element.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Applicant: GI Dynamics, Inc.
    Inventors: Sean K. Holmes, Barry Maxwell, Ezra S. Fishman
  • Patent number: 7819836
    Abstract: A patient is provided with an increased sense of satiety by increasing resistance to the outflow of food from the stomach and through the intestines. Stomach emptying may be slowed with devices implantable within the gastrointestinal tract below the stomach. Implants are preferably removable and can include artificial strictures or apertures that may be adjustable or elastic to vary the rate of stomach emptying. Slowing gastric emptying may induce satiety for a longer period and may therefore reduce food consumption. Many of the embodiments include intestinal sleeves or sleeves, but they need not. The resistor concept may be applied to a simple anchor and resistor without a long sleeve.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: October 26, 2010
    Assignee: GI Dynamics, Inc.
    Inventors: Andy H. Levine, Ronald B. Lamport, David A. Melanson, Stuart A. Randle, Ezra S. Fishman
  • Publication number: 20090182355
    Abstract: Gastrointestinal implants in areas such as the esophageal area, the stomach, and the intestinal area are used in the treatment of conditions like obesity and diabetes. An implant including an anchor with barbs having pores, can allow for longer term anchoring. The pores can promote tissue ingrowth from the surrounding tissue that the barb is penetrating, thus advantageously allowing increased stability and longer term anchoring compared to a non-porous barb.
    Type: Application
    Filed: December 10, 2008
    Publication date: July 16, 2009
    Inventors: Andy H. Levine, David A. Melanson, Ezra S. Fishman, Ronald B. Lamport, James Loper, John Panek, Sean K. Holmes