Patents by Inventor Fabio Riccardi

Fabio Riccardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10666874
    Abstract: Techniques of reducing or eliminating artifact pixels in high dynamic range (HDR) imaging are described. One embodiment includes obtaining a first image of a scene at a first time with first exposure settings and obtaining a second image of the scene at a second time with second exposure settings that differ from the first exposure settings. The obtained images may be downsampled. The images may be compared to each other to assist with determining a number of potential artifact pixels in the scene. Depending on a relationship between the number of potential artifact pixels and a threshold value, the first image or second image may be selected as a reference image for registering the images with each other. A type of registration performed between the images may depend on which of the two images is the selected reference image. The registered images may be used to generate an HDR image.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: May 26, 2020
    Assignee: Apple Inc.
    Inventors: Hao Sun, Fabio Riccardi, Garrett M. Johnson, Farhan A. Baqai
  • Publication number: 20180352134
    Abstract: Techniques of reducing or eliminating artifact pixels in high dynamic range (HDR) imaging are described. One embodiment includes obtaining a first image of a scene at a first time with first exposure settings and obtaining a second image of the scene at a second time with second exposure settings that differ from the first exposure settings. The obtained images may be downsampled. The images may be compared to each other to assist with determining a number of potential artifact pixels in the scene. Depending on a relationship between the number of potential artifact pixels and a threshold value, the first image or second image may be selected as a reference image for registering the images with each other. A type of registration performed between the images may depend on which of the two images is the selected reference image. The registered images may be used to generate an HDR image.
    Type: Application
    Filed: May 14, 2018
    Publication date: December 6, 2018
    Inventors: Hao Sun, Fabio Riccardi, Garrett M. Johnson, Farhan A. Baqai
  • Patent number: 9667842
    Abstract: Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing locally-adaptive noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band locally-adaptive approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
    Type: Grant
    Filed: August 30, 2014
    Date of Patent: May 30, 2017
    Assignee: Apple Inc.
    Inventors: Farhan A. Baqai, Claus Molgaard, Fabio Riccardi, Xuemei Zhang
  • Patent number: 9641820
    Abstract: Techniques for de-noising a digital image using a multi-band noise filter and a unique combination of texture and chroma metrics are described. A novel texture metric may be used during multi-band filter operations on an image's luma channel to determine if a given pixel is associated with a textured/smooth region of the image. A novel chroma metric may be used during the same multi-band filter operation to determine if the same pixel is associated with a blue/not-blue region of the image. Pixels identified as being associated with a smooth blue region may be aggressively de-noised and conservatively sharpened. Pixels identified as being associated with a textured blue region may be conservatively de-noised and aggressively sharpened. By coupling texture and chroma constraints it has been shown possible to mitigate noise in an image's smooth blue regions without affecting the edges/texture in other blue objects.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 2, 2017
    Assignee: Apple Inc.
    Inventors: Farhan A. Baqai, Fabio Riccardi, Russell A. Pflughaupt, Claus Molgaard, Gijesh Varghese
  • Patent number: 9626745
    Abstract: Systems, methods, and computer readable media to fuse digital images are described. In general, techniques are disclosed that use multi-band noise reduction techniques to represent input and reference images as pyramids. Once decomposed in this manner, images may be fused using novel low-level (noise dependent) similarity measures. In some implementations similarity measures may be based on intra-level comparisons between reference and input images. In other implementations, similarity measures may be based on inter-level comparisons. In still other implementations, mid-level semantic features such as black-level may be used to inform the similarity measure. In yet other implementations, high-level semantic features such as color or a specified type of region (e.g., moving, stationary, or having a face or other specified shape) may be used to inform the similarity measure.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 18, 2017
    Assignee: Apple Inc.
    Inventors: Farhan A. Baqai, Fabio Riccardi, Russell A. Pflughaupt, Claus Molgaard, Gijesh Varghese
  • Publication number: 20170070718
    Abstract: Techniques for de-noising a digital image using a multi-band noise filter and a unique combination of texture and chroma metrics are described. A novel texture metric may be used during multi-band filter operations on an image's luma channel to determine if a given pixel is associated with a textured/smooth region of the image. A novel chroma metric may be used during the the same multi-band filter operation to determine if the same pixel is associated with a blue/not-blue region of the image. Pixels identified as being associated with a smooth blue region may be aggressively de-noised and conservatively sharpened. Pixels identified as being associated with a textured blue region may be conservatively de-noised and aggressively sharpened. By coupling texture and chroma constraints it has been shown possible to mitigate noise in an image's smooth blue regions without affecting the edges/texture in other blue objects.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 9, 2017
    Inventors: Farhan A. Baqai, Fabio Riccardi, Russell A. Pflughaupt, Claus Molgaard, Gijesh Varghese
  • Publication number: 20170069060
    Abstract: Systems, methods, and computer readable media to fuse digital images are described. In general, techniques are disclosed that use multi-band noise reduction techniques to represent input and reference images as pyramids. Once decomposed in this manner, images may be fused using novel low-level (noise dependent) similarity measures. In some implementations similarity measures may be based on intra-level comparisons between reference and input images. In other implementations, similarity measures may be based on inter-level comparisons. In still other implementations, mid-level semantic features such as black-level may be used to inform the similarity measure. In yet other implementations, high-level semantic features such as color or a specified type of region (e.g., moving, stationary, or having a face or other specified shape) may be used to inform the similarity measure.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 9, 2017
    Inventors: Farhan A. Baqai, Fabio Riccardi, Russell A. Pflughaupt, Claus Molgaard, Gijesh Varghese
  • Patent number: 9525804
    Abstract: Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
    Type: Grant
    Filed: August 30, 2014
    Date of Patent: December 20, 2016
    Assignee: Apple Inc.
    Inventors: Farhan A. Baqai, Claus Molgaard, Fabio Riccardi, Russell Pflughaupt
  • Patent number: 9344638
    Abstract: Systems, methods, and computer readable media to capture and process high dynamic range (HDR) images when appropriate for a scene are disclosed. When appropriate, multiple images at a single—slightly underexposed—exposure value are captured (making a constant bracket HDR capture sequence) and local tone mapping (LTM) applied to each image. Local tone map and histogram information can be used to generate a noise-amplification mask which can be used during fusion operations. Images obtained and fused in the disclosed manner provide high dynamic range with improved noise and de-ghosting characteristics.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: May 17, 2016
    Assignee: Apple Inc.
    Inventors: Xuemei Zhang, Marius Tico, Yingjun Bai, Farhan A. Baqai, Fabio Riccardi, Juanqing Chen, Paul M. Hubel, George E. Williams, Todd S. Sachs, Yongfang Liang
  • Publication number: 20160065794
    Abstract: Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
    Type: Application
    Filed: August 30, 2014
    Publication date: March 3, 2016
    Inventors: Farhan A. Baqai, Claus Molgaard, Fabio Riccardi, Russell Pflughaupt
  • Publication number: 20160065795
    Abstract: Image enhancement is achieved by separating image signals, e.g. YCbCr image signals, into a series of frequency bands and performing locally-adaptive noise reduction on bands below a given frequency but not on bands above that frequency. The bands are summed to develop the image enhanced signals. The YCbCr, multi-band locally-adaptive approach to denoising is able to operate independently—and in an optimized fashion—on both luma and chroma channels. Noise reduction is done based on models developed for both luma and chroma channels by measurements taken for multiple frequency bands, in multiple patches on the ColorChecker chart, and at multiple gain levels, in order to develop a simple yet robust set of models that may be tuned off-line a single time for each camera and then applied to images taken by such cameras in real-time without excessive processing requirements and with satisfactory results across illuminant types and lighting conditions.
    Type: Application
    Filed: August 30, 2014
    Publication date: March 3, 2016
    Inventors: Farhan A. Baqai, Claus Molgaard, Fabio Riccardi, Xuemei Zhang
  • Publication number: 20150350513
    Abstract: Systems, methods, and computer readable media to capture and process high dynamic range (HDR) images when appropriate for a scene are disclosed. When appropriate, multiple images at a single—slightly underexposed—exposure value are captured (making a constant bracket HDR capture sequence) and local tone mapping (LTM) applied to each image. Local tone map and histogram information can be used to generate a noise-amplification mask which can be used during fusion operations. Images obtained and fused in the disclosed manner provide high dynamic range with improved noise and de-ghosting characteristics.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: Apple Inc.
    Inventors: Xuemei Zhang, Marius Tico, Yingjun Bai, Farhan A. Baqai, Fabio Riccardi, Juanqing Chen, Paul M. Hubel, George E. Williams, Todd S. Sachs, Yongfang Liang
  • Patent number: 7623724
    Abstract: Provided is a computer implemented method and interface for mapping image intensities on a computing device. The processing method includes displaying an image on a display device having a range of intensities, subdividing the range of intensities from the image on the display device into a set of intensity zones, associating each intensity zone with one or more segments of a graphical diagram to be displayed on a computer device and moving a partition separating the one or more segments of the graphical diagram displayed on the computer device to change the intensity levels of the displayed image.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: November 24, 2009
    Inventor: Fabio Riccardi
  • Patent number: 7571160
    Abstract: Systems and methods in accordance with the present invention provide for an implementation of the XQuery standard, and such an implementation will be referred to herein as an XQuery (XML Query language) implementation. An XQuery implementation can be based on a token stream representation, which allows large XML documents to be processed without having to first read the entire document. An XQuery implementation can also utilize a streaming XQuery engine. A set of algorithms and a set of rewrite rules can be used for the implementation. Given a query, a set of rules can be applied to that query to transform the query into another query. Some of these rules allow the resulting query to be streamable. In other words, a query that would otherwise require an XML document to be read into memory can now be transformed into a query that can work on an XML stream. The type system of the XQuery language can be based on XML Schema, and the basic types of XML Schema can have derived types.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: August 4, 2009
    Assignee: Bea Systems, Inc.
    Inventors: Fabio Riccardi, Paul J. Lucas, Daniela D. Florescu, Donald Alan Kossmann, Till Carsten Westmann, Christopher James Hillery
  • Patent number: 7509631
    Abstract: The invention provides systems and methods for implementation of a computer language type system by augmenting finite state automata algorithms to accommodate symbols having both subtype relationships and nested types. To make the classical automata algorithms work for type system with subtypes, finite state automata for a data type is augmented by additional transitions that include secondary symbols, wherein secondary symbols are subtypes of symbols of alphabet of finite state automata. A data type when compared to another data type must compare both names and the contents.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: March 24, 2009
    Assignee: Bea Systems, Inc.
    Inventors: Paul J. Lucas, Daniela D. Florescu, Fabio Riccardi
  • Patent number: 7421144
    Abstract: A method and interface for finding image intensities of an image on a computing device is provided. Finding these image intensities includes displaying an image on a display device having a range of intensities, identifying one or more regions of the image according to the intensity values in each of the one or more regions, categorizing each region as falling into one intensity zone category from a set of intensity zone categories according to the intensity value for each region and displaying the image on the display device with the regions and corresponding related intensity zone categories highlighted.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: September 2, 2008
    Inventor: Fabio Riccardi
  • Patent number: 7194462
    Abstract: Systems and methods in accordance with the present invention provide for an implementation of the XQuery standard, and such an implementation will be referred to herein as an XQuery (XML Query language) implementation. An XQuery implementation can be based on a token stream representation, which allows large XML documents to be processed without having to first read the entire document. An XQuery implementation can also utilize a streaming XQuery engine. A set of algorithms and a set of rewrite rules can be used for the implementation. Given a query, a set of rules can be applied to that query to transform the query into another query. Some of these rules allow the resulting query to be streamable. In other words, a query that would otherwise require an XML document to be read into memory can now be transformed into a query that can work on an XML stream. The type system of the XQuery language can be based on XML Schema, and the basic types of XML Schema can have derived types.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: March 20, 2007
    Assignee: Bea Systems, Inc.
    Inventors: Fabio Riccardi, Paul J. Lucas, Daniela D. Florescu, Donald Alan Kossmann, Till Casten Westmann, Christopher James Hillery
  • Publication number: 20060210151
    Abstract: A method and interface for finding image intensities of an image on a computing device is provided. Finding these image intensities includes displaying an image on a display device having a range of intensities, identifying one or more regions of the image according to the intensity values in each of the one or more regions, categorizing each region as falling into one intensity zone category from a set of intensity zone categories according to the intensity value for each region and displaying the image on the display device with the regions and corresponding related intensity zone categories highlighted.
    Type: Application
    Filed: March 16, 2005
    Publication date: September 21, 2006
    Inventor: Fabio Riccardi
  • Publication number: 20060210150
    Abstract: Provided is a computer implemented method and interface for mapping image intensities on a computing device. The processing method includes displaying an image on a display device having a range of intensities, subdividing the range of intensities from the image on the display device into a set of intensity zones, associating each intensity zone with one or more segments of a graphical diagram to be displayed on a computer device and moving a partition separating the one or more segments of the graphical diagram displayed on the computer device to change the intensity levels of the displayed image.
    Type: Application
    Filed: March 16, 2005
    Publication date: September 21, 2006
    Inventor: Fabio Riccardi
  • Publication number: 20060210152
    Abstract: A computer implemented method and interface for modifying images on a computing device is provided. The interface used for modification covers a region of an image having a range of intensities with an inner geometric shape to receive a continuous image processing effect, surrounds the inner geometric shape with an outer geometric shape to indicate a gradient region to receive a diminishing amount of the image processing effect, applies the continuous image processing effect to the region of image within inner geometric shape and gradually reduces the image processing effect to the area outside inner geometric shape and within surrounding outer geometric shape.
    Type: Application
    Filed: March 16, 2005
    Publication date: September 21, 2006
    Inventor: Fabio Riccardi