Patents by Inventor Fanling H. Yang

Fanling H. Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9673316
    Abstract: A semiconductor device including a VDMOS device formed therein includes a terminal, or contact, to the drain region of the VDMOS device from the frontside of the device. In one or more implementations, a semiconductor device includes a semiconductor substrate having a first surface and a second surface and a vertical diffused metal-oxide-semiconductor device formed within the semiconductor substrate. The vertical diffused metal-oxide-semiconductor device includes at least one source region formed proximate to the first surface and at least one drain region formed proximate to the second surface. A through-substrate via is formed within the semiconductor substrate, and the through-substrate via electrically connected to the drain region. The through-substrate via provides an electrical interconnection to the drain region from the first surface.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 6, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Christopher S. Blair, Albert Bergemont, Sudarsan Uppili, Fanling H. Yang, Guillaume Bouche
  • Patent number: 7026666
    Abstract: A self-aligned bipolar transistor and a method of formation thereof are provided. The bipolar transistor has a raised extrinsic base such that the link base resistance is reduced by providing an extrinsic base which is thicker than the intrinsic base. The increase in thickness of the extrinsic base provides a less resistive layer of the heavily doped base region. The method of forming the bipolar transistor includes depositing a first epitaxial layer on a substrate to form a base region having an intrinsic base region and an extrinsic base region. The extrinsic base region is raised by depositing a second epitaxial layer over a portion of the first epitaxial layer such that the thickness of the extrinsic base layer is x and the thickness of the intrinsic layer is y, wherein x>y. The second epitaxial layer is deposited using a chemical vapor epitaxial device where the concentration of Ge to Si is gradually reduced from above 5% to close to 0% during the epitaxy process.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: April 11, 2006
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Alexel Shatalov, Michael Rowlandson, Sang H. Park, Robert F. Scheer, Fanling H. Yang
  • Patent number: 6767798
    Abstract: A self-aligned bipolar transistor and a method of formation thereof are provided. The bipolar transistor has a raised extrinsic base such that the link base resistance is reduced by providing an extrinsic base which is thicker than the intrinsic base. The increase in thickness of the extrinsic base provides a less resistive layer of the heavily doped base region. The method of forming the bipolar transistor includes depositing a first epitaxial layer on a substrate to form a base region having an intrinsic base region and an extrinsic base region. The extrinsic base region is raised by depositing a second epitaxial layer over a portion of the first epitaxial layer such that the thickness of the extrinsic base layer is x and the thickness of the intrinsic layer is y, wherein x>y. The second epitaxial layer is deposited using a chemical vapor epitaxial device where the concentration of Ge to Si is gradually reduced from above 5% to close to 0% during the epitaxy process.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: July 27, 2004
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Alexei Shatalov, Michael Rowlandson, Sang H. Park, Robert F. Scheer, Fanling H. Yang
  • Publication number: 20040126978
    Abstract: A self-aligned bipolar transistor and a method of formation thereof are provided. The bipolar transistor has a raised extrinsic base such that the link base resistance is reduced by providing an extrinsic base which is thicker than the intrinsic base. The increase in thickness of the extrinsic base provides a less resistive layer of the heavily doped base region. The method of forming the bipolar transistor includes depositing a first epitaxial layer on a substrate to form a base region having an intrinsic base region and an extrinsic base region. The extrinsic base region is raised by depositing a second epitaxial layer over a portion of the first epitaxial layer such that the thickness of the extrinsic base layer is x and the thickness of the intrinsic layer is y, wherein x>y. The second epitaxial layer is deposited using a chemical vapor epitaxial device where the concentration of Ge to Si is gradually reduced from above 5% to close to 0% during the epitaxy process.
    Type: Application
    Filed: December 12, 2003
    Publication date: July 1, 2004
    Inventors: Alexander Kalnitsky, Alexel Shatalov, Michael Rowlandson, Sang H. Park, Robert F. Scheer, Fanling H. Yang
  • Patent number: 6686250
    Abstract: A self-aligned bipolar transistor and a method of formation thereof are provided. The bipolar transistor has an emitter region characterized by a y-shaped structure formed from bilayer polysilicon. The bilayer polysilicon includes a first polysilicon emitter structure and a second polysilicon emitter structure. The method of forming the bipolar transistor includes forming an emitter stack on a substrate. The emitter stack comprises the first polysilicon emitter structure and a plug structure. The emitter stack defines the substrate into a masked portion and exposed adjacent portions. The exposed adjacent portions are selectively doped with a dopant to define an extrinsic base region, wherein the dopant is blocked from entering the masked portion. After selectively doping the extrinsic base region, the plug structure is removed from the emitter stack and the second polysilicon emitter structure is formed on the first polysilicon emitter structure to define the emitter region of the bipolar transistor.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: February 3, 2004
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Michael Rowlandson, Fanling H. Yang, Sang Park, Robert F. Scheer
  • Publication number: 20030189239
    Abstract: A self-aligned bipolar transistor and a method of formation thereof are provided. The bipolar transistor has a raised extrinsic base such that the link base resistance is reduced by providing an extrinsic base which is thicker than the intrinsic base. The increase in thickness of the extrinsic base provides a less resistive layer of the heavily doped base region. The method of forming the bipolar transistor includes depositing a first epitaxial layer on a substrate to form a base region having an intrinsic base region and an extrinsic base region. The extrinsic base region is raised by depositing a second epitaxial layer over a portion of the first epitaxial layer such that the thickness of the extrinsic base layer is x and the thickness of the intrinsic layer is y, wherein x>y. The second epitaxial layer is deposited using a chemical vapor epitaxial device where the concentration of Ge to Si is gradually reduced from above 5% to close to 0% during the epitaxy process.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Inventors: Alexander Kalnitsky, Alexei Shatalov, Michael Rowlandson, Sang H. Park, Robert F. Scheer, Fanling H. Yang
  • Patent number: 6303413
    Abstract: A method of forming a shallow-deep trench isolation (SDTI) is provided that includes the steps of forming a pair of deep trenches through a silicon on insulator (SOI) layer without substantially disturbing an underlying buried oxide (BOX) layer. Once the deep trenches are formed, the trenches are filed with suitable electrical isolating materials, such as undoped poly-silicon or dielectric material, and etched back to obtain a substantially planarized top surface. Subsequently, an active nitride layer is deposited on the planarized top surface, and then a pair of shallow trenches are formed. The shallow trenches are formed using a low selectivity etch to uniformly etch a deep trench liner oxide, the SOI layer and the electrical isolating material which have interfaces at non-perpendicular angles with respect to the direction of the etching. Once the shallow and deep trenches are formed, subsequent processing including filling the shallow trench, annealing and chemical-mechanical polishing can be performed.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: October 16, 2001
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Dmitri A. Choutov, Robert F. Scheer, Fanling H. Yang, Thomas W. Dobson, Tadanori Yamaguchi, Geoffrey C. Stutzin, Ken Liao