Patents by Inventor Farhang Nesvaderani

Farhang Nesvaderani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220045315
    Abstract: Provided is an improved method for forming a battery comprising a cathode and electrolyte. The method of forming the cathode comprises forming a first solution comprising a digestible feedstock of a first metal suitable for formation of a cathode oxide precursor and a multi-carboxylic acid. The digestible feedstock is digested to form a first metal salt in solution wherein the first metal salt precipitates as a salt of deprotonated multi-carboxylic acid thereby forming an oxide precursor and a coating metal is added to the oxide precursor. The oxide precursor is heated to form the coated lithium ion cathode material. The electrolyte is void of salts and additives.
    Type: Application
    Filed: October 5, 2021
    Publication date: February 10, 2022
    Inventors: Stephen A. Campbell, Perry Juric, Farhang Nesvaderani
  • Publication number: 20210376320
    Abstract: Provided is an improved method for forming lithium ion cathode materials specifically for use in a battery. The method comprises forming a first solution comprising a digestible feedstock of a first metal suitable for formation of a cathode oxide precursor and a multi-carboxylic acid. The digestible feedstock is digested to form a first metal salt in solution wherein the first metal salt precipitates as a salt of deprotonated multi-carboxylic acid thereby forming an oxide precursor. The oxide precursor is heated to form the lithium ion cathode material.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Annabelle Wong, Cameron Hodgins, Elahe Talaie Pashiri, Farhang Nesvaderani, O'Rian Reid, Sean Mehta, Stephen A. Campbell, Yingzi Feng
  • Patent number: 11121370
    Abstract: Provided is an improved method for forming lithium ion cathode materials specifically for use in a battery. The method comprises forming a first solution comprising a digestible feedstock of a first metal suitable for formation of a cathode oxide precursor and a multi-carboxylic acid. The digestible feedstock is digested to form a first metal salt in solution wherein the first metal salt precipitates as a salt of deprotonated multi-carboxylic acid thereby forming an oxide precursor. The oxide precursor is heated to form the lithium ion cathode material.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: September 14, 2021
    Assignee: Nano One Materials Corp.
    Inventors: Annabelle Wong, Cameron Hodgins, Elahe Talaie Pashiri, Farhang Nesvaderani, O'Rian Reid, Sean Mehta, Stephen A. Campbell, Yingzi Feng
  • Publication number: 20200362468
    Abstract: The present disclosure relates to an electrolytic manganese dioxide composition comprising two manganese dioxide phases, at least one of the two manganese dioxide phases having at least a portion that exhibits amorphicity. The two manganese dioxide phases may be present in a ratio of between 9:1 and 1:3. The two manganese dioxide crystal phases may be akhtenskite and ramsdellite. The present disclosure further relates to a battery comprising said electrolytic manganese dioxide composition, and methods of manufacturing said electrolytic manganese dioxide composition. The present disclosure further relates to manufacturing an electrode within a cell, the cell for use as a battery, the electrode comprising electrolytic manganese dioxide composition consisting essentially of two manganese dioxide crystal phases.
    Type: Application
    Filed: November 7, 2018
    Publication date: November 19, 2020
    Inventors: Arman BONAKDARPOUR, David P. WILKINSON, Farhang NESVADERANI, Ivan STOSEVSKI
  • Publication number: 20190372120
    Abstract: Provided is an improved method for forming lithium ion cathode materials specifically for use in a battery. The method comprises forming a first solution comprising a digestible feedstock of a first metal suitable for formation of a cathode oxide precursor and a multi-carboxylic acid. The digestible feedstock is digested to form a first metal salt in solution wherein the first metal salt precipitates as a salt of deprotonated multi-carboxylic acid thereby forming an oxide precursor. The oxide precursor is heated to form the lithium ion cathode material.
    Type: Application
    Filed: January 17, 2018
    Publication date: December 5, 2019
    Inventors: Annabelle Wong, Cameron Hodgins, Elahe Talaie Pashiri, Farhang Nesvaderani, O'Rian Reid, Sean Mehta, Stephen A. Campbell, Yingzi Feng