Patents by Inventor Fariborz Assaderaghi

Fariborz Assaderaghi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11586860
    Abstract: A method and data processing system for detecting tampering of a machine learning model is provided. The method includes training a machine learning model. During a training operating period, a plurality of input values is provided to the machine learning model. In response to a predetermined invalid input value, the machine learning model is trained that a predetermined output value will be expected. The model is verified that it has not been tampered with by inputting the predetermined invalid input value during an inference operating period. If the expected output value is provided by the machine learning model in response to the predetermined input value, then the machine learning model has not been tampered with. If the expected output value is not provided, then the machine learning model has been tampered with. The method may be implemented using the data processing system.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: February 21, 2023
    Assignee: NXP B.V.
    Inventors: Fariborz Assaderaghi, Marc Joye
  • Patent number: 11539556
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: December 27, 2022
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Publication number: 20220238159
    Abstract: Control logic within a memory control component outputs first and second memory read commands to a memory module at respective times, the memory module having memory components disposed thereon. Interface circuitry within the memory control component receives first read data concurrently from a first plurality of the memory components via a first plurality of data paths, respectively, in response to the first memory read command, and receives second read data concurrently from a second plurality of the memory components via a second plurality of data paths, respectively, in response to the second memory read command, the first plurality of the memory components including at least one memory component not included in the second plurality of the memory components and vice-versa.
    Type: Application
    Filed: January 3, 2022
    Publication date: July 28, 2022
    Inventors: Gary B. Bronner, Brent Steven Haukness, Mark A. Horowitz, Mark D. Kellam, Fariborz Assaderaghi
  • Publication number: 20220070032
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Application
    Filed: August 12, 2021
    Publication date: March 3, 2022
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Patent number: 11244727
    Abstract: Control logic within a memory control component outputs first and second memory read commands to a memory module at respective times, the memory module having memory components disposed thereon. Interface circuitry within the memory control component receives first read data concurrently from a first plurality of the memory components via a first plurality of data paths, respectively, in response to the first memory read command, and receives second read data concurrently from a second plurality of the memory components via a second plurality of data paths, respectively, in response to the second memory read command, the first plurality of the memory components including at least one memory component not included in the second plurality of the memory components and vice-versa.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 8, 2022
    Assignee: Rambus Inc.
    Inventors: Gary B. Bronner, Brent S. Haukness, Mark A. Horowitz, Mark D. Kellam, Fariborz Assaderaghi
  • Patent number: 11115247
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: September 7, 2021
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Patent number: 11076226
    Abstract: Smart sensors comprising one or more microelectromechanical systems (MEMS) sensors and a digital signal processor (DSP) in a sensor package are described. An exemplary smart sensor can comprise a MEMS acoustic sensor or microphone and a DSP housed in a package or enclosure comprising a substrate and a lid and a package substrate that defines a back cavity for the MEMS acoustic sensor or microphone. Provided implementations can also comprise a MEMS motion sensor housed in the package or enclosure. Embodiments of the subject disclosure can provide improved power management and battery life from a single charge by intelligently responding to trigger events or wake events while also providing an always on sensor that persistently detects the trigger events or wake events. In addition, various physical configurations of smart sensors and MEMS sensor or microphone packages are described.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: July 27, 2021
    Assignee: INVENSENSE, INC.
    Inventors: Aleksey S. Khenkin, Fariborz Assaderaghi, Peter Cornelius
  • Publication number: 20210006895
    Abstract: Smart sensors comprising one or more microelectromechanical systems (MEMS) sensors and a digital signal processor (DSP) in a sensor package are described. An exemplary smart sensor can comprise a MEMS acoustic sensor or microphone and a DSP housed in a package or enclosure comprising a substrate and a lid and a package substrate that defines a back cavity for the MEMS acoustic sensor or microphone. Provided implementations can also comprise a MEMS motion sensor housed in the package or enclosure. Embodiments of the subject disclosure can provide improved power management and battery life from a single charge by intelligently responding to trigger events or wake events while also providing an always on sensor that persistently detects the trigger events or wake events. In addition, various physical configurations of smart sensors and MEMS sensor or microphone packages are described.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Inventors: Aleksey S. Khenkin, Fariborz Assaderaghi, Peter Cornelius
  • Publication number: 20200373169
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Application
    Filed: May 28, 2020
    Publication date: November 26, 2020
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Patent number: 10812900
    Abstract: Smart sensors comprising one or more microelectromechanical systems (MEMS) sensors and a digital signal processor (DSP) in a sensor package are described. An exemplary smart sensor can comprise a MEMS acoustic sensor or microphone and a DSP housed in a package or enclosure comprising a substrate and a lid and a package substrate that defines a back cavity for the MEMS acoustic sensor or microphone. Provided implementations can also comprise a MEMS motion sensor housed in the package or enclosure. Embodiments of the subject disclosure can provide improved power management and battery life from a single charge by intelligently responding to trigger events or wake events while also providing an always on sensor that persistently detects the trigger events or wake events. In addition, various physical configurations of smart sensors and MEMS sensor or microphone packages are described.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: October 20, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Aleksey S. Khenkin, Fariborz Assaderaghi, Peter Cornelius
  • Patent number: 10683205
    Abstract: Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electro-mechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally, or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: June 16, 2020
    Assignee: INVENSENSE, INC.
    Inventors: Michael J. Daneman, Fariborz Assaderaghi
  • Patent number: 10686632
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: June 16, 2020
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Publication number: 20200134391
    Abstract: A method and data processing system for detecting tampering of a machine learning model is provided. The method includes training a machine learning model. During a training operating period, a plurality of input values is provided to the machine learning model. In response to a predetermined invalid input value, the machine learning model is trained that a predetermined output value will be expected. The model is verified that it has not been tampered with by inputting the predetermined invalid input value during an inference operating period. If the expected output value is provided by the machine learning model in response to the predetermined input value, then the machine learning model has not been tampered with. If the expected output value is not provided, then the machine learning model has been tampered with. The method may be implemented using the data processing system.
    Type: Application
    Filed: October 24, 2018
    Publication date: April 30, 2020
    Inventors: FARIBORZ ASSADERAGHI, MARC JOYE
  • Publication number: 20190173697
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Application
    Filed: November 7, 2018
    Publication date: June 6, 2019
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Publication number: 20190141457
    Abstract: Providing security features in an audio sensor is presented herein. A micro-electro-mechanical system (MEMS) microphone can include an acoustic membrane that converts an acoustic signal into an electrical signal; an electronic amplifier that increases an amplitude of the electrical signal to generate an amplified signal; and switch(es) configured to prevent propagation of a direct current (DC) voltage source to the MEMS microphone; prevent propagation of the DC voltage source to the electronic amplifier; prevent propagation of the electrical signal to the electronic amplifier; and/or prevent propagation of the amplified signal to an external device.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Inventors: Omid Oliaei, Fariborz Assaderaghi
  • Patent number: 10182296
    Abstract: Providing security features in an audio sensor is presented herein. A micro-electro-mechanical system (MEMS) microphone can include an acoustic membrane that converts an acoustic signal into an electrical signal; an electronic amplifier that increases an amplitude of the electrical signal to generate an amplified signal; and switch(es) configured to prevent propagation of a direct current (DC) voltage source to the MEMS microphone; prevent propagation of the DC voltage source to the electronic amplifier; prevent propagation of the electrical signal to the electronic amplifier; and/or prevent propagation of the amplified signal to an external device.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: January 15, 2019
    Assignee: INVENSENSE, INC.
    Inventors: Omid Oliaei, Fariborz Assaderaghi
  • Publication number: 20180346323
    Abstract: Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electro-mechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally, or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
    Type: Application
    Filed: August 10, 2018
    Publication date: December 6, 2018
    Inventors: Michael J. Daneman, Fariborz Assaderaghi
  • Patent number: 10135647
    Abstract: A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 20, 2018
    Assignee: Rambus Inc.
    Inventors: Jared L. Zerbe, Fariborz Assaderaghi, Brian S. Leibowitz, Hae-Chang Lee, Jihong Ren, Qi Lin
  • Patent number: 10123112
    Abstract: Systems and techniques for providing improved beam forming functionality and/or improve noise cancellation functionality in a microphone package are presented. In an implementation, a device includes a first microelectromechanical systems (MEMS) sensor, a second MEMS sensor, and a digital signal processor. The first MEMS sensor is contained in a first back cavity within the device. The second MEMS sensor is contained in a second back cavity within the device. The digital signal processor generates a cardioid microphone pattern based on data associated with the first MEMS sensor contained in the first back cavity and other data associated with the second MEMS sensor contained in the second back cavity, where the digital signal processor forms at least a portion of the first back cavity and the second back cavity.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: November 6, 2018
    Assignee: INVENSENSE, INC.
    Inventors: Carlo Murgia, James Lim, Fariborz Assaderaghi, Anthony Minervini
  • Patent number: 10071906
    Abstract: Systems and methods that protect CMOS layers from exposure to a release chemical are provided. The release chemical is utilized to release a micro-electro-mechanical (MEMS) device integrated with the CMOS wafer. Sidewalls of passivation openings created in a complementary metal-oxide-semiconductor (CMOS) wafer expose a dielectric layer of the CMOS wafer that can be damaged on contact with the release chemical. In one aspect, to protect the CMOS wafer and prevent exposure of the dielectric layer, the sidewalls of the passivation openings can be covered with a metal barrier layer that is resistant to the release chemical. Additionally or optionally, an insulating barrier layer can be deposited on the surface of the CMOS wafer to protect a passivation layer from exposure to the release chemical.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 11, 2018
    Assignee: INVENSENSE, INC.
    Inventors: Michael J. Daneman, Fariborz Assaderaghi