Patents by Inventor FARSHAD FARID

FARSHAD FARID has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11448113
    Abstract: A vehicle system (100) includes a conversion catalyst (116), a temperature sensor (156), an indication device (142), and an exhaust gas aftertreatment system controller (132). The conversion catalyst (116) is configured to receive exhaust gas. The temperature sensor (156) is configured to sense a conversion catalyst temperature of the conversion catalyst (116). The indication device (142) is operable between a static state and an impure fuel alarm state. The exhaust gas aftertreatment system controller (132) is configured to receive the conversion catalyst temperature from the temperature sensor (156). The exhaust gas aftertreatment system controller (132) is also configured to compare the conversion catalyst temperature to a conversion catalyst temperature lower threshold. The exhaust gas aftertreatment system controller (132) is also configured to compare the conversion catalyst temperature to a conversion catalyst temperature upper threshold.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: September 20, 2022
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Gautam Sharma, Deepak Joy Frank, James Hyungsuk Kang, Abhijeet Nande, Jinqian Gong, Farshad Farid, Changsheng Su, Bryon D. Staebler
  • Publication number: 20220213829
    Abstract: A vehicle system (100) includes a conversion catalyst (116), a temperature sensor (156), an indication device (142), and an exhaust gas aftertreatment system controller (132). The conversion catalyst (116) is configured to receive exhaust gas. The temperature sensor (156) is configured to sense a conversion catalyst temperature of the conversion catalyst (116). The indication device (142) is operable between a static state and an impure fuel alarm state. The exhaust gas aftertreatment system controller (132) is configured to receive the conversion catalyst temperature from the temperature sensor (156). The exhaust gas aftertreatment system controller (132) is also configured to compare the conversion catalyst temperature to a conversion catalyst temperature lower threshold. The exhaust gas aftertreatment system controller (132) is also configured to compare the conversion catalyst temperature to a conversion catalyst temperature upper threshold.
    Type: Application
    Filed: June 10, 2019
    Publication date: July 7, 2022
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Gautam Sharma, Deepak Joy Frank, James Hyungsuk Kang, Abhijeet Nande, Jinqian Gong, Farshad Farid, Changsheng Su, Bryon D. Staebler
  • Patent number: 11105245
    Abstract: A system for diagnosing an improper reductant concentration includes: a selective catalytic reduction (SCR) catalyst unit, a doser configured to dose reductant into a chamber of the SCR catalyst unit, a reductant concentration sensor, and a controller. In some embodiments, the controller is configured to: direct the doser to dose the reductant into the chamber of the SCR catalyst unit, based on information received from the reductant concentration sensor, determine a reductant concentration level in the chamber of the SCR catalyst unit, compare a measured system-out NOx value to at least one benchmark value corresponding to the determined reductant concentration level, and determine a status of the reductant dosed by the doser based on the comparison of the measured system-out NOx value to the at least one benchmark value.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: August 31, 2021
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Varun R. Rajagopal, Farshad Farid, Jinqian Gong
  • Publication number: 20190309671
    Abstract: A system for diagnosing an improper reductant concentration includes: a selective catalytic reduction (SCR) catalyst unit, a doser configured to dose reductant into a chamber of the SCR catalyst unit, a reductant concentration sensor, and a controller. In some embodiments, the controller is configured to: direct the doser to dose the reductant into the chamber of the SCR catalyst unit, based on information received from the reductant concentration sensor, determine a reductant concentration level in the chamber of the SCR catalyst unit, compare a measured system-out NOx value to at least one benchmark value corresponding to the determined reductant concentration level, and determine a status of the reductant dosed by the doser based on the comparison of the measured system-out NOx value to the at least one benchmark value.
    Type: Application
    Filed: December 11, 2017
    Publication date: October 10, 2019
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Varun R. Rajagopal, Farshad Farid, Jinqian Gong
  • Patent number: 10247080
    Abstract: An aftertreatment system comprises a SCR system, an engine out NOx (EONOx) adjustment system and a controller. The controller is configured to instruct the EONOx adjustment system to adjust an EONOx amount between a high EONOx level for a first predetermined time and a low EONOx level for a second predetermined time when the SCR system is in a diagnostic enabling condition. The controller determines a SCR system out NOx (SONOx) amount. The controller determines an efficiency parameter of the SCR system from the SONOx amount when the EONOx amount transitions from the low EONOx level to the high EONOx level and if the efficiency parameter satisfies a predetermined threshold. In response to the efficiency parameter not satisfying the predetermined threshold, the controller determines that the SCR system has failed.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: April 2, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Farshad Farid, Jinqian Gong, Varun R. Rajagopal
  • Patent number: 9926827
    Abstract: An aftertreatment system comprises an exhaust reductant storage tank and a SCR system including a catalyst fluidly coupled thereto. The aftertreatment system also includes a controller configured to interpret an output signal indicative of a catalytic efficiency of the catalyst. The output signal is filtered using a fast filter to obtain a fast filter response signal, and also using a slow filter to obtain a slow filter response signal. It is determined if the fast filter response signal exceeds a first threshold and if the slow filter response signal exceeds a second threshold. In response to determining that the fast filter response signal exceeds the first threshold, and the slow filter signal response exceeds the second threshold, an indication is provided that an improper exhaust reductant is present in the storage tank.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: March 27, 2018
    Assignee: CUMMINS EMISSION SOLUTIONS, INC.
    Inventors: Jaya Chandra-Ramadugu, Farshad Farid, Kwadwo O. Owusu, Sergio Manuel Hernandez-Gonzalez, Joshua Supplee, Andrew Hillery
  • Publication number: 20170356322
    Abstract: An aftertreatment system comprises a SCR system, an engine out NOx (EONOx) adjustment system and a controller. The controller is configured to instruct the EONOx adjustment system to adjust an EONOx amount between a high EONOx level for a first predetermined time and a low EONOx level for a second predetermined time when the SCR system is in a diagnostic enabling condition. The controller determines a SCR system out NOx (SONOx) amount. The controller determines an efficiency parameter of the SCR system from the SONOx amount when the EONOx amount transitions from the low EONOx level to the high EONOx level and if the efficiency parameter satisfies a predetermined threshold. In response to the efficiency parameter not satisfying the predetermined threshold, the controller determines that the SCR system has failed.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 14, 2017
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Farshad Farid, Jinqian Gong, Varun R. Rajagopal
  • Patent number: 9677445
    Abstract: Systems and methods to selectively control plurality of dosing modules may include receiving data indicative of an exhaust flow rate. An amount of reductant to be dosed may be determined based, at least in part, on the data indicative of the exhaust flow rate. A decomposition delay time may also be determined and a first dosing module and a second dosing module may be selectively activated. The first dosing module may be selectively activated at a first time and the second dosing module is selectively activated at a second time. The second time is based on the first time and the determined decomposition delay time.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 13, 2017
    Assignee: Cummins Emission Solutions, Inc.
    Inventors: Rafael Nunez, Atul Abhyankar, Ken Hummel, Justin Kruer, Tyler Lorenz, Farshad Farid, Arun Shori Sundaravel
  • Publication number: 20170089245
    Abstract: Systems and methods to selectively control plurality of dosing modules may include receiving data indicative of an exhaust flow rate. An amount of reductant to be dosed may be determined based, at least in part, on the data indicative of the exhaust flow rate. A decomposition delay time may also be determined and a first dosing module and a second dosing module may be selectively activated. The first dosing module may be selectively activated at a first time and the second dosing module is selectively activated at a second time. The second time is based on the first time and the determined decomposition delay time.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Applicant: Cummins Emission Solutions, Inc.
    Inventors: Rafael Nunez, Atul Abhyankar, Ken Hummel, Justin Kruer, Tyler Lorenz, Farshad Farid, Arun Shori Sundaravel
  • Patent number: 9551251
    Abstract: Systems and methods to selectively control plurality of dosing modules may include receiving data indicative of an exhaust flow rate. An amount of reductant to be dosed may be determined based, at least in part, on the data indicative of the exhaust flow rate. A decomposition delay time may also be determined and a first dosing module and a second dosing module may be selectively activated. The first dosing module may be selectively activated at a first time and the second dosing module is selectively activated at a second time. The second time is based on the first time and the determined decomposition delay time.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: January 24, 2017
    Assignee: Cummins Emission Solutions, Inc.
    Inventors: Rafael Nunez, Atul Abhyankar, Ken Hummel, Justin Kruer, Tyler Lorenz, Farshad Farid, Arun Shori Sundaravel
  • Publication number: 20160319725
    Abstract: An aftertreatment system comprises an exhaust reductant storage tank and a SCR system including a catalyst fluidly coupled thereto. The aftertreatment system also includes a controller configured to interpret an output signal indicative of a catalytic efficiency of the catalyst. The output signal is filtered using a fast filter to obtain a fast filter response signal, and also using a slow filter to obtain a slow filter response signal. It is determined if the fast filter response signal exceeds a first threshold and if the slow filter response signal exceeds a second threshold. In response to determining that the fast filter response signal exceeds the first threshold, and the slow filter signal response exceeds the second threshold, an indication is provided that an improper exhaust reductant is present in the storage tank.
    Type: Application
    Filed: May 1, 2015
    Publication date: November 3, 2016
    Applicant: Cummins Emission Solutions, Inc.
    Inventors: Jaya Chandra-Ramadugu, Farshad Farid, Kwadwo O. Owusu, Sergio Manuel Hernandez-Gonzalez, Joshua Supplee, Andrew Hillery
  • Publication number: 20160069237
    Abstract: Systems and methods to selectively control plurality of dosing modules may include receiving data indicative of an exhaust flow rate. An amount of reductant to be dosed may be determined based, at least in part, on the data indicative of the exhaust flow rate. A decomposition delay time may also be determined and a first dosing module and a second dosing module may be selectively activated. The first dosing module may be selectively activated at a first time and the second dosing module is selectively activated at a second time. The second time is based on the first time and the determined decomposition delay time.
    Type: Application
    Filed: November 17, 2015
    Publication date: March 10, 2016
    Applicant: Cummins Emission Solutions, Inc.
    Inventors: Rafael Nunez, Atul Abhyankar, Ken Hummel, Justin Kruer, Tyler Lorenz, Farshad Farid, Arun Shori Sundaravel
  • Patent number: 9267225
    Abstract: Disclosed is a method of operating a laundry treating appliance having a tub, a rotatable drum within the tub, and a rotatable drive shaft supported in a bearing assembly and mounted to the drum, with the bending moment acting on the bearing assembly being determined and used as an input to control the operation of the appliance.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: February 23, 2016
    Assignee: Whirlpool Corporation
    Inventors: Donald E. Erickson, Farshad Farid
  • Patent number: 9192892
    Abstract: Systems and methods to selectively control plurality of dosing modules may include receiving data indicative of an exhaust flow rate. An amount of reductant to be dosed may be determined based, at least in part, on the data indicative of the exhaust flow rate. A decomposition delay time may also be determined and a first dosing module and a second dosing module may be selectively activated. The first dosing module may be selectively activated at a first time and the second dosing module is selectively activated at a second time. The second time is based on the first time and the determined decomposition delay time.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: November 24, 2015
    Assignee: Cummins Emission Solutions, Inc.
    Inventors: Rafael Nunez, Atul Abhyankar, Ken Hummel, Justin Kruer, Tyler Lorenz, Farshad Farid, Arun Shori Sundaravel
  • Publication number: 20150196878
    Abstract: Systems and methods to selectively control plurality of dosing modules may include receiving data indicative of an exhaust flow rate. An amount of reductant to be dosed may be determined based, at least in part, on the data indicative of the exhaust flow rate. A decomposition delay time may also be determined and a first dosing module and a second dosing module may be selectively activated. The first dosing module may be selectively activated at a first time and the second dosing module is selectively activated at a second time. The second time is based on the first time and the determined decomposition delay time.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 16, 2015
    Applicant: Cummins Emission Solutions, Inc.
    Inventors: Rafael Nunez, Atul Abhyankar, Ken Hummel, Justin Kruer, Tyler Lorenz, Farshad Farid, Arun Shori Sundaravel
  • Patent number: 8991223
    Abstract: A laundry treating appliance having a drum, defining a treating chamber, with a lifter and a balancing system having at least one balancing ring and a reservoir located in the lifter and a liquid supply system fluidly coupled to the reservoir. Liquid may be supplied to the ring and to the reservoir through the ring to offset an imbalance in a laundry load located within the drum.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: March 31, 2015
    Assignee: Whirlpool Corporation
    Inventors: Donald E. Erickson, Farshad Farid, Stephen D. Ostdiek, Vishal Verma, Mark M. Xie
  • Patent number: 8701451
    Abstract: A laundry treating appliance having a drum, defining a treating chamber, with a lifter and a balancing system having at least one balancing ring and a reservoir located in the lifter and a liquid supply system fluidly coupled to the reservoir. Liquid may be supplied to the ring and to the reservoir through the ring to offset an imbalance in a laundry load located within the drum.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: April 22, 2014
    Assignee: Whirlpool Corporation
    Inventors: Farshad Farid, Vishal Verma
  • Patent number: 8695383
    Abstract: A laundry treating appliance having a drum, defining a treating chamber, with a lifter and a balancing system having at least one balancing ring and a reservoir located in the lifter and a liquid supply system fluidly coupled to the reservoir. Liquid may be supplied to the ring and to the reservoir through the ring to offset an imbalance in a laundry load located within the drum.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: April 15, 2014
    Assignee: Whirlpool Corporation
    Inventors: Donald E. Erickson, Farshad Farid, Dennis L. Kehl, Vishal Verma
  • Publication number: 20130160218
    Abstract: Disclosed is a method of operating a laundry treating appliance having a tub, a rotatable drum within the tub, and a rotatable drive shaft supported in a bearing assembly and mounted to the drum, with the bending moment acting on the bearing assembly being determined and used as an input to control the operation of the appliance.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicant: WHIRLPOOL CORPORATION
    Inventors: DONALD E. ERICKSON, FARSHAD FARID
  • Patent number: 8468631
    Abstract: A method for controlling the operation of a laundry treating appliance resting on a floor and having a rotatable drum defining a treating chamber that includes creating an imbalance in the drum, rotating the drum at least one predetermined speed, determining an out of balance parameter, determining a floor parameter of the floor based on the out of balance parameter, and setting at least one operating parameter based on the floor parameter.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: June 25, 2013
    Assignee: Whirlpool Corporation
    Inventors: Farshad Farid, Dennis L. Kehl, Kenneth P. Mitera