Patents by Inventor Faruk Dizdarevic

Faruk Dizdarevic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891171
    Abstract: The present invention “Aircraft Wing with Tiplet” reflects a wing with two distinct sections including inner section for maximized lift production with long chords, high taper, and ultra-thin airfoils for substantial profile drag reduction, as well as a “tiplet” section with minimized area and maximized span to minimize aspect ratio penalty from the standpoint of increased induced drag mitigation due to large inner section lifting area. Long chords and large area of inner section are feasible from the standpoint of flight safety with the application of airfoils with forward center of pressure that provide for dynamic stability of aircraft in flight.
    Type: Grant
    Filed: June 12, 2023
    Date of Patent: February 6, 2024
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Publication number: 20200156787
    Abstract: The present invention is a double wing aircraft with two fixed wings embodied as either a flying wing configuration or a double wing configuration having a fuselage with smaller external dimensions, larger airlifting area, thinner airfoils, and lighter airframe relative to prior art that altogether is resulting with lower drag, fuel consumption, harmful emissions, and noise, as well as higher speed and flight safety, longer range, and shorter runway when compared to prior art.
    Type: Application
    Filed: November 18, 2018
    Publication date: May 21, 2020
    Inventors: FARUK DIZDAREVIC, MITHAD DIZDAREVIC
  • Patent number: 10640212
    Abstract: The present invention is a double wing aircraft with two fixed wings embodied as either a flying wing configuration or a double wing configuration having a fuselage with smaller external dimensions, larger airlifting area, thinner airfoils, and lighter airframe relative to prior art that altogether is resulting with lower drag, fuel consumption, harmful emissions, and noise, as well as higher speed and flight safety, longer range, and shorter runway when compared to prior art.
    Type: Grant
    Filed: November 18, 2018
    Date of Patent: May 5, 2020
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Patent number: 8056852
    Abstract: The Longitudinal Flying Wing aircraft idea provides for design of large cargo and passenger aircraft in range from low to high subsonic and transonic speed. Such aircraft would have up to twice lower fuel consumption per unit of payload, higher lift capacity, and a significantly longer range, while having a significantly lower level of noise inside passenger cabin and cockpit relative to classical concept aircraft. This idea is further providing for efficient, reliable, and simple flight controls, hence it may be successfully applied for design of all-size, long range, high-lift-capacity unmanned aircraft throughout the entire range of subsonic speeds.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: November 15, 2011
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Patent number: 7854409
    Abstract: Canarded deltoid main wing aircraft idea allows for design of large supersonic civil and military aircraft with cruising speeds of up to Mach 3 at the altitude of over 25,000 meters. The fuel consumption per unit of payload of such aircraft would be at least twice lower with a longer range of over 50% when compared to existing supersonic aircraft of the same size. Simultaneously, the flight safety and ride quality during takeoff and landing at low speeds would be similar to the existing subsonic passenger aircraft. A low fuel consumption, long range, high ride quality, and high flight safety of these aircraft are widely opening a door for design of supersonic long range continental and intercontinental passenger aircraft that would be highly competitive with existing long range high subsonic passenger aircraft.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: December 21, 2010
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Patent number: 7793884
    Abstract: “T-tailed Deltoid Main Wing” idea allows for design of high-subsonic passenger aircraft with a capacity between 200 and 650 passengers with outer dimensions fitting within 80 m box on class VI airports while having more than twice lower fuel consumption per unit of payload when compared to the present classical-concept aircraft with fuselage that have the same passenger capacity. T-tailed deltoid main wing aircraft is satisfying all safety requirements for a passenger aircraft while having over 50% longer range than the aircraft of equivalent capacity with fuselage. Simple aerodynamic and structural solutions of T-tailed deltoid main wing aircraft are resulting with low development risks and production cost. Simple and reliable flight control systems of aircraft that are based on T-tailed deltoid main wing aerodynamic configuration allow for design of all-purpose, high-lift-capacity, and long range unmanned aircraft.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: September 14, 2010
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Publication number: 20100224735
    Abstract: Canarded deltoid main wing aircraft idea allows for design of large supersonic civil and military aircraft with cruising speeds of up to Mach 3 at the altitude of over 25,000 meters. The fuel consumption per unit of payload of such aircraft would be at least twice lower with a longer range of over 50% when compared to existing supersonic aircraft of the same size. Simultaneously, the flight safety and ride quality during takeoff and landing at low speeds would be similar to the existing subsonic passenger aircraft. A low fuel consumption, long range, high ride quality, and high flight safety of these aircraft are widely opening a door for design of supersonic long range continental and intercontinental passenger aircraft that would be highly competitive with existing long range high subsonic passenger aircraft.
    Type: Application
    Filed: April 21, 2010
    Publication date: September 9, 2010
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Publication number: 20100163670
    Abstract: Deltoid Main Wing idea provides for several innovative aerodynamic configurations for large subsonic and supersonic civil and military aircraft including “T-tailed Deltoid Main Wing” configuration that allows for design of high-subsonic jumbo jet passenger aircraft with a capacity between 200 and 700 passengers whose outer dimensions fit within 80 m box on class VI airports while having more than twice lower fuel consumption per unit of payload when compared to the present classical-concept aircraft with the same passenger capacity, while further allowing for design of all-size and all-purpose, high-lift-capacity, and long-range unmanned aircraft.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Inventors: FARUK DIZDAREVIC, MITHAD DIZDAREVIC
  • Patent number: 6923403
    Abstract: The “Tailed Flying Wing Aircraft” idea represents new aerodynamic concepts for large high subsonic aircraft. Large high subsonic aircraft based on these new aerodynamic concepts are having a significantly higher lift capacity and longer range, as well as a significantly lower fuel consumption of at least two times less than the aircraft based on classical fuselage concept with the same external dimensions. In addition, the aircraft based on the new concepts are having a significantly better longitudinal stability and maneuverability, as well as aerodynamic efficiency at high subsonic speed than aircraft based on “Tailless Flying Wing” concepts. The aircraft based on the “Tailed Flying Wing Aircraft” idea satisfy all safety requirements for civil aircraft. They also have simple shapes for manufacturing, hence this idea provides for new realistic advanced aerodynamic concepts for the next generations of large subsonic aircraft.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: August 2, 2005
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Patent number: 6578798
    Abstract: This airlifting surface division idea provides for division of airlifting surfaces resulting in low induced and interference drag. It can be applied to aircraft wings and helicopter and windmill rotor blades to significantly reduce induced drag when compared to prior art. Also, it can be used for new concepts of large subsonic and hypersonic aircraft to significantly reduce their overall drag and external dimensions when compared to prior art, simultaneously providing for very good pitch maneuver and longitudinal stability of such aircraft.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: June 17, 2003
    Inventors: Faruk Dizdarevic, Mithad Dizdarevic
  • Patent number: 6328265
    Abstract: A slot forming segment is inserted between two portions of a wing, which are adjacent along a longitudinal axis of wing, into a cove of a carved trailing edge of a leading portion of the adjacent portions and pivotal relatively to both adjacent portions of the wing between which it is inserted. The slot forming segment has such a shape and a position of its axis of rotation that by deflecting it downwardly relatively to the leading portion, it is formed a slot inside the wing's structure of large inlet cross section and high convergence ratio for the control of the boundary layer over an upper surface of the wing behind the slot forming segment for the need of extra lift production. Simultaneously, it is increased both a camber and an aerodynamic surface area of a following portion of the adjacent portions whereby additionally increasing the extra lift production on the wing.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: December 11, 2001
    Inventor: Faruk Dizdarevic