Patents by Inventor Fee Li LIE

Fee Li LIE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11075299
    Abstract: Embodiments of the invention are directed to a method that includes forming a fin over a major surface of a substrate. The fin includes an active fin region having a top fin surface and a fin sidewall. The top fin surface is substantially parallel with respect to the major surface, and the fin sidewall is substantially perpendicular with respect to the major surface. A gate is formed over and around a central portion of the fin, the gate having a bottom gate region and a top gate region. The bottom gate region is substantially below the top fin surface and includes a bottom gate region sidewall that is substantially parallel with respect to the fin sidewall. The top gate region is substantially above the top fin surface and includes a top gate region sidewall that is at an angle with respect to the major surface.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 27, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric Miller, Gauri Karve, Marc A. Bergendahl, Fee Li Lie, Kangguo Cheng, Sean Teehan
  • Publication number: 20210217669
    Abstract: A method of forming vertical transport field effect transistor (VTFET) devices is provided. The method includes forming a plurality of vertical fins on an upper insulating layer of a dual insulator layer semiconductor-on-insulator (SeOI) substrate, and forming two masking blocks on the plurality of vertical fins, wherein a portion of a protective layer and a fin template on each of the plurality of vertical fins is exposed between the two masking blocks. The method further includes removing a portion of the upper insulating layer between the two masking blocks to form a first cavity beneath the plurality of vertical fins, and forming a first bottom source/drain in the first cavity below the plurality of vertical fins. The method further includes replacing the two masking blocks with a masking layer patterned to have two mask openings above portions of the upper insulating layer adjacent to the first bottom source/drain.
    Type: Application
    Filed: January 15, 2020
    Publication date: July 15, 2021
    Inventors: Eric Miller, Marc A. Bergendahl, Kangguo Cheng, John Sporre, Gauri Karve, Fee Li Lie
  • Patent number: 11062911
    Abstract: First lithography and etching are carried out on a semiconductor structure to provide a first intermediate semiconductor structure having a first set of surface features corresponding to a first portion of desired fin formation mandrels. Second lithography and etching are carried out on the first intermediate structure, using a second mask, to provide a second intermediate semiconductor structure having a second set of surface features corresponding to a second portion of the mandrels. The second set of surface features are unequally spaced from the first set of surface features and/or the features have different pitch. The fin formation mandrels are formed in the second intermediate semiconductor structure using the first and second sets of surface features; spacer material is deposited over the mandrels and is etched back to form a third intermediate semiconductor structure having a fin pattern. Etching is carried out on same to produce the fin pattern.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: July 13, 2021
    Assignee: Tessera, Inc.
    Inventors: Fee Li Lie, Dongbing Shao, Robert Wong, Yongan Xu
  • Patent number: 11056418
    Abstract: A stacked semiconductor microcooler includes a first and second semiconductor microcooler. Each microcooler includes silicon fins extending from a silicon substrate. A metal layer may be formed upon the fins. The microcoolers may be positioned such that the fins of each microcooler are aligned. One or more microcoolers may be thermally connected to a surface of a coolant conduit that is thermally connected to an electronic device heat generating device, such as an integrated circuit (IC) chip, or the like. Heat from the electronic device heat generating device may transfer to the one or more microcoolers. A flow of cooled liquid may be introduced through the conduit and heat from the one or more microcoolers may transfer to the liquid coolant.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 6, 2021
    Assignee: International Business Machines Corporation
    Inventors: Donald F. Canaperi, Daniel A. Corliss, Dario Goldfarb, Dinesh Gupta, Fee Li Lie, Kamal K. Sikka
  • Patent number: 11049789
    Abstract: A stacked semiconductor microcooler includes a first microcooler and a second microcooler. The microcoolers may be positioned such that the fins of each microcooler are vertically aligned. The microcoolers may include an inlet passage to accept coolant and an outlet passage to expel the coolant. One or more microcoolers may be thermally connected to an electronic device heat generating device, such as an integrated circuit (IC) chip, or the like. Heat from the electronic device heat generating device may transfer to the one or more microcoolers. A flow of cooled liquid may be introduced through the passages and heat from the one or more microcoolers may transfer to the liquid coolant.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: June 29, 2021
    Assignee: International Business Machines Corporation
    Inventors: Donald F. Canaperi, Daniel A. Corliss, Dario Goldfarb, Dinesh Gupta, Fee Li Lie, Kamal K. Sikka
  • Patent number: 11043581
    Abstract: A method and structures are used to fabricate a nanosheet semiconductor device. Nanosheet fins including nanosheet stacks including alternating silicon (Si) layers and silicon germanium (SiGe) layers are formed on a substrate and etched to define a first end and a second end along a first axis between which each nanosheet fin extends parallel to every other nanosheet fin. The SiGe layers are undercut in the nanosheet stacks at the first end and the second end to form divots, and a dielectric is deposited in the divots. The SiGe layers between the Si layers are removed before forming source and drain regions of the nanosheet semiconductor device such that there are gaps between the Si layers of each nanosheet stack, and the dielectric anchors the Si layers. The gaps are filled with an oxide that is removed after removing the dummy gate and prior to forming the replacement gate.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: June 22, 2021
    Assignee: Tessera, Inc.
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 11043494
    Abstract: A method for fabricating fin field effect transistors comprises creating a pattern of self-aligned small cavities for P-type material growth using at least two hard mask layers, generating a pre-defined isolation area around each small cavity using a vertical spacer, selectively removing N-type material from the self-aligned small cavities, and growing P-type material in the small cavities. The P-type material may be silicon germanium (SiGe) and the N-type material may be tensile Silicon (t-Si). The pattern of self-aligned small cavities for P-type material growth is created by depositing two hard mask materials over a starting substrate wafer, selectively depositing photo resist over a plurality N-type areas, reactive ion etching to remove the second hard mask layer material over areas not covered by photo resist to create gaps in second hard mask layer, and removing the photo resist to expose the second hard mask material in the N-type areas.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 22, 2021
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Leigh Anne H. Clevenger, Mona A. Ebrish, Gauri Karve, Fee Li Lie, Deepika Priyadarshini, Indira Priyavarshini Seshadri, Nicole A. Saulnier
  • Patent number: 11031346
    Abstract: An advanced security method for verifying that integrated circuit patterns being processed into one or more layers provided to a wafer are trusted patterns and that the wafer being used during processing is a trusted wafer is provided. The method includes separate steps of pattern verification and wafer verification. Notably, the method includes first verifying that a pattern printed on a wafer matches a pattern of a trusted reference. Next, a peak and valley profile present at a specific location on a backside surface of the wafer is measured. The method further includes second verify that the measured peak and valley profile matches an original peak and valley profile measured at the same location on the backside surface of the wafer.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: June 8, 2021
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Carol Boye, Fee Li Lie, Shravan Kumar Matham, Brad Austin
  • Publication number: 20210118854
    Abstract: The subject disclosure relates to 3D microelectronic chip packages with embedded coolant channels. The disclosed 3D microelectronic chip packages provide a complete and practical mechanism for introducing cooling channels within the 3D chip stack while maintaining the electrical connection through the chip stack. According to an embodiment, a microelectronic package is provided that comprises a first silicon chip comprising first coolant channels interspersed between first thru-silicon-vias (TSVs). The microelectronic chip package further comprises a silicon cap attached to a first surface of the first silicon chip, the silicon cap comprising second TSVs that connect to the first TSVs. A second silicon chip comprising second coolant channels can further be attached to the silicon cap via interconnects formed between a first surface of the second silicon chip and the silicon cap, wherein the interconnects connect to the second TSVs.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Kamal K. Sikka, Fee Li Lie, Kevin Winstel, Ravi K. Bonam, Iqbal Rashid Saraf, Dario Goldfarb, Daniel Corliss, Dinesh Gupta
  • Publication number: 20210111246
    Abstract: A nonplanar MOSFET device such as a FinFET or a sacked nanosheets/nanowires FET has a substrate, one or more nonplanar channels disposed on the substrate, and a gate stack enclosing the nonplanar channels. A first source/drain (S/D) region is disposed on the substrate on a source side of the nonplanar channel and second S/D region is disposed on the substrate on a drain side of the nonplanar channel. The first and second S/D regions made of silicon-germanium (SiGe). In some embodiments, both S/D regions are p-type doped. Contact trenches provide a metallic electrical connection to the first and the second source/drain (S/D) regions. The S/D regions have two parts, a first part with a first concentration of germanium (Ge) and a second part with a second, higher Ge concentration that is a surface layer having convex shape and aligned with one of the contact trenches.
    Type: Application
    Filed: October 14, 2019
    Publication date: April 15, 2021
    Inventors: Fee Li Lie, Choonghyun Lee, Kangguo Cheng, Hemanth Jagannathan, Oleg Gluschenkov
  • Patent number: 10937867
    Abstract: A method of forming a punch through stop region that includes forming isolation regions of a first dielectric material between adjacent fin structures and forming a spacer of a second dielectric material on sidewalls of the fin structure. The first dielectric material of the isolation region may be recessed with an etch process that is selective to the second dielectric material to expose a base sidewall portion of the fin structures. Gas phase doping may introduce a first conductivity type dopant to the base sidewall portion of the fin structure forming a punch through stop region underlying a channel region of the fin structures.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Huiming Bu, Sivananda K. Kanakasabapathy, Fee Li Lie, Tenko Yamashita
  • Patent number: 10937810
    Abstract: Sub-fin removal techniques for SOI like isolation in finFET devices are provided. In one aspect, a method for forming a finFET device includes: etching partial fins in a substrate, wherein the partial fins include top portions of fins of the finFET device; forming a bi-layer spacer on the top portions of the fins; complete etching of the fins in the substrate to form bottom portions of the fins of the finFET device; depositing an insulator between the fins; recessing the insulator enough to expose a region of the fins not covered by the bi-layer spacer; removing the exposed region of the fins to create a gap between the top and bottom portions of the fins; filling the gap with additional insulator. A method for forming a finFET device is also provided where placement of the fin spacer occurs after (rather than before) insulator deposition. A finFET device is also provided.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10937764
    Abstract: The subject disclosure relates to 3D microelectronic chip packages with embedded coolant channels. The disclosed 3D microelectronic chip packages provide a complete and practical mechanism for introducing cooling channels within the 3D chip stack while maintaining the electrical connection through the chip stack. According to an embodiment, a microelectronic package is provided that comprises a first silicon chip comprising first coolant channels interspersed between first thru-silicon-vias (TSVs). The microelectronic chip package further comprises a silicon cap attached to a first surface of the first silicon chip, the silicon cap comprising second TSVs that connect to the first TSVs. A second silicon chip comprising second coolant channels can further be attached to the silicon cap via interconnects formed between a first surface of the second silicon chip and the silicon cap, wherein the interconnects connect to the second TSVs.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Kamal K. Sikka, Fee Li Lie, Kevin Winstel, Ravi K. Bonam, Iqbal Rashid Saraf, Dario Goldfarb, Daniel Corliss, Dinesh Gupta
  • Publication number: 20210005749
    Abstract: Embodiments of the invention are directed to a method that includes forming a fin over a major surface of a substrate. The fin includes an active fin region having a top fin surface and a fin sidewall. The top fin surface is substantially parallel with respect to the major surface, and the fin sidewall is substantially perpendicular with respect to the major surface. A gate is formed over and around a central portion of the fin, the gate having a bottom gate region and a top gate region. The bottom gate region is substantially below the top fin surface and includes a bottom gate region sidewall that is substantially parallel with respect to the fin sidewall. The top gate region is substantially above the top fin surface and includes a top gate region sidewall that is at an angle with respect to the major surface.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 7, 2021
    Inventors: Eric Miller, Gauri Karve, Marc A. Bergendahl, Fee Li Lie, Kangguo Cheng, Sean Teehan
  • Patent number: 10886271
    Abstract: A method of forming a complementary metal oxide semiconductor (CMOS) device on a substrate, including forming a plurality of vertical fins on the substrate, forming a first set of source/drain projections on the first subset of vertical fins, forming a second set of source/drain projections on the second subset of vertical fins, where the second set of source/drain projections is a different oxidizable material from the oxidizable material of the first set of source/drain projections, converting a portion of each of the second set of source/drain projections and a portion of each of the first set of source/drain projections to an oxide, removing the converted oxide portion of the first set of source/drain projections to form a source/drain seed mandrel, and removing a portion of the converted oxide portion of the second set of source/drain projections to form a dummy post.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Fee Li Lie, Eric R. Miller, Sean Teehan
  • Publication number: 20200402889
    Abstract: Embodiments of the present invention are directed to microchannels having varied critical dimensions for efficient cooling of semiconductor integrated circuit chip packages. In a non-limiting embodiment of the invention, a patterning stack is formed over a substrate. The patterning stack includes a hard mask, an etch transfer layer on the hard mask, and a photoresist on the etch transfer layer. A manifold trench is formed in a first region of the substrate and is recessed below a surface of the etch transfer layer. A microchannel trench is formed in a second region of the substrate to expose the surface of the etch transfer layer. The manifold trench and the microchannel trench are recessed such that the manifold trench extends into the hard mask and the microchannel trench extends into the etch transfer layer. A manifold and a microchannel are formed in the substrate by pattern transfer.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 24, 2020
    Inventors: RAVI K. BONAM, Kamal K. Sikka, JOSHUA M. RUBIN, Iqbal Rashid Saraf, FEE LI LIE
  • Publication number: 20200365518
    Abstract: An advanced security method for verifying that integrated circuit patterns being processed into one or more layers provided to a wafer are trusted patterns and that the wafer being used during processing is a trusted wafer is provided. The method includes separate steps of pattern verification and wafer verification. Notably, the method includes first verifying that a pattern printed on a wafer matches a pattern of a trusted reference. Next, a peak and valley profile present at a specific location on a backside surface of the wafer is measured. The method further includes second verify that the measured peak and valley profile matches an original peak and valley profile measured at the same location on the backside surface of the wafer.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 19, 2020
    Inventors: Effendi Leobandung, Carol Boye, Fee Li Lie, Shravan Kumar Matham, Brad Austin
  • Patent number: 10833010
    Abstract: Techniques that facilitate integration of artificial intelligence devices are provided. In one example, a device includes a first dual-damascene layer, a second dual-damascene layer and an artificial intelligence memory device. The first dual-damascene layer comprises a first set of copper connections formed in first dielectric material. The second dual-damascene layer that comprises a second set of copper connections formed in second dielectric material. The artificial intelligence memory device is integrated between the first dual-damascene layer and the second dual-damascene layer. A through-level via (TLV) electrical connection associated with the artificial intelligence memory device provides an interconnection between the first set of copper connections and the second set of copper connections.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hsueh-Chung Chen, Lawrence A. Clevenger, Fee Li Lie, Effendi Leobandung
  • Patent number: 10833190
    Abstract: Embodiments are directed to methods and resulting structures for a vertical field effect transistor (VFET) having a super long channel. A pair of semiconductor fins is formed on a substrate. A semiconductor pillar is formed between the semiconductor fins on the substrate. A region that extends under all of the semiconductor fins and under part of the semiconductor pillar is doped. A conductive gate is formed over a channel region of the semiconductor fins and the semiconductor pillar. A surface of the semiconductor pillar serves as an extended channel region when the gate is active.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Gauri Karve, Fee Li Lie, Eric R. Miller, John R. Sporre, Sean Teehan
  • Patent number: 10832945
    Abstract: Techniques to improve CD width and depth uniformity between features with different layout densities are provided. In one aspect, a method of forming a contact structure includes: patterning features in different regions of a dielectric at different layout densities whereby, due to etch loading effects, the features are patterned to different depths in the dielectric and have different bottom dimensions; depositing a sacrificial spacer into/lining the features whereby some of the features are pinched-off by the sacrificial spacer; opening up the sacrificial spacer at bottoms of one or more of the features that are not pinched-off by the sacrificial spacer; selectively extending the one or more features in the dielectric, such that the one or more features have a discontinuous taper with a stepped sidewall profile; removing the sacrificial spacer; and filling the features with a conductive material to form the contact structure. A contact structure is also provided.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Nicole Saulnier, Indira Seshadri, Lawrence A. Clevenger, Leigh Anne H. Clevenger, Gauri Karve, Fee Li Lie, Isabel Cristina Chu, Hosadurga Shobha, Ekmini A. De Silva